

PENNSYLVANIA ALLERGY & ASTHMA ASSOCIATION 74th PAAA Annual Meeting

JUNE 23-25, 2023 The Hotel Hershey, Hershey, PA

PRESENTATIONS

74th PAAA Annual Meeting

JUNE 23-25, 2023 The Hotel Hershey, Hershey, PA

Presentations for Friday, June 23, 2023

8:00 am – 8:45 am	Contact Dermatitis Marc Serota, MD
8:45 am – 9:30 am	CVID- Evaluation and Management Kelli Williams, MD, MPH
9:30 am – 10:15 am	Diagnosing and Managing Anaphylaxis in 2023 Marcus Shaker, MD, MS, FAAP, FAAAAI, FACAAI
10:45 am – 11:30 am	Food Protein-Induced Enterocolitis: How common is it? Jonathan Spergel, MD, PhD
11:30 am – 12:15 pm	Updates in Immunodeficiency Kelli Williams, MD, MPH
12:15 pm – 1:00 pm	Mayer A. Green Allergy Foundation Memorial Lecture: Eosinophilic Esophagitis: Update on Treatment and Diagnosis Jonathan Spergel, MD, PhD

74th PAAA Annual Meeting

JUNE 23-25, 2023 The Hotel Hershey, Hershey, PA

Contact Dermatitis

Presented by: Marc Serota, MD

Friday, June 23, 2023 8:00 a.m. – 8:45 a.m.

Allergic Contact Dermatitis

Marc Serota, MD

FAAD, FAAAAI, FACAAI Peak Dermatology Rocky Mountain VA Medical Center

> Board Certified: Dermatology Allergy/Immunology Pediatrics

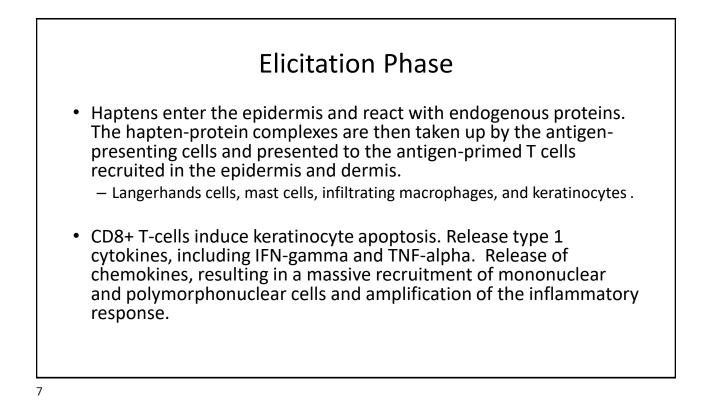
1

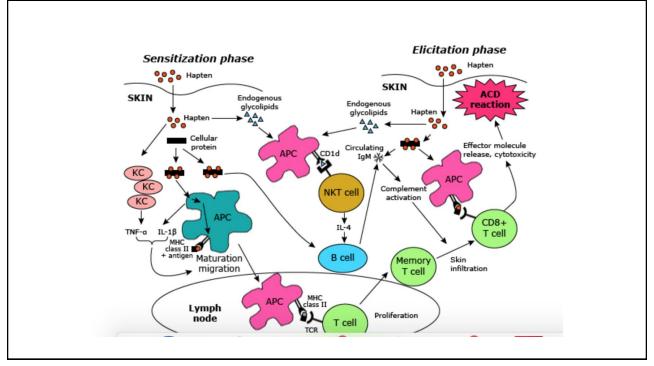
Disclosures

• Consultant for Regeneron, Sanofi-Genzyme, Incyte, BMS, Arcutis, Amgen, Dermavant.

Objectives 1. Review the presentation of allergic contact dermatitis and its mimics. 2. Learn the immunology associated with allergic contact dermatitis. 3. Discuss the most common allergens encountered in practice.

3

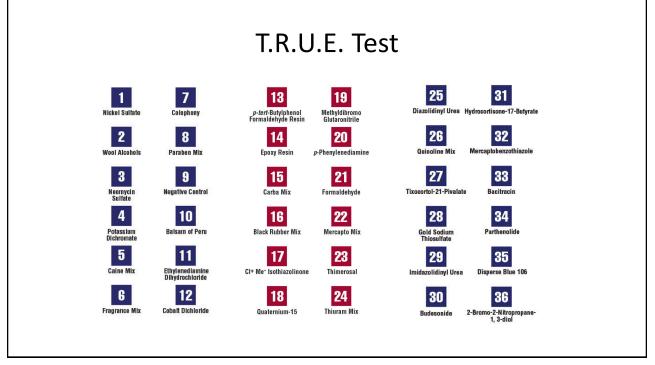

Contact Allergy Principles


- Exposure to a topical allergen.
- Type IV (cell mediated hypersensitivity reaction).
- Should occur with every exposure.
- Timeframe: 48-72 hours.

Mechanism	
 Contact allergens are low molecular weight (<500 Daltons) chemicals called haptens, which are able to penetrate the stratum corneum barrier of the skin. 	
 Haptens are not immunogenic by themselves Recognized after binding to a skin protein carrier May be naturally occurring substances such as urushiol (poison ivy), synthetic compounds, dyes, fragrances, drugs, or heavy metal salts. 	

Sensitization Phase

- Initial exposure
- Hapten-protein complex is engulfed and processed by Langerhans cells, which subsequently migrate to the draining lymph nodes where they present the hapten-peptide-MHC complexes to naïve, allergen-specific T cells (priming).
- Clonal expansion of hapten-specific memory/effector T cells, which circulate throughout the body and are subsequently recruited from the circulation into the skin during the elicitation phase.
- Hapten-specific T cells are now found in the lymph nodes, in the blood, and in the skin. Upon re-exposure to the same hapten, T cells will be activated and massively recruited in the skin (the elicitation phase).

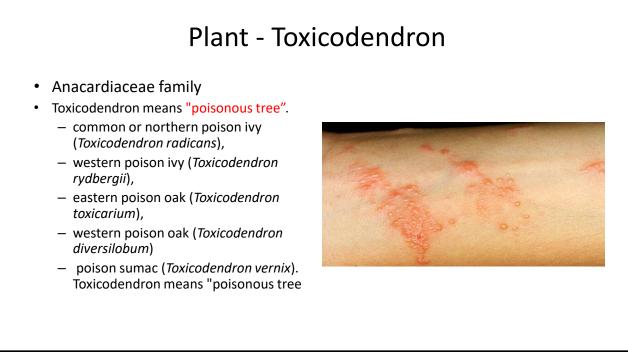


Epicutaneous Patch Testing

- Place allergens of concern on skin surface for 48 hours.
- Final read at 72-96 hours.
- Consider re-evaluation at 4-5 days to observe for resolution of irritant reactions and for late reactions and reactions to weaker antigens.

F.A.L.S.E? What's missing:

- Glutaraldehyde (4.4%)
- Iodopropynyl butylcarbamate(2.6%)
- (Disperse blue 106) (2.3%)
- Dithiomorpholine (2.1%)
- (Sodium thiosulfate) (1.6%)
- Cinnamic aldehyde (1.5%)
- 4-aminoazobenzene (1.0%)
- cocamidopropyl betaine (0.8%)
- N,N-diphenylguanidine (0.8%)
- Total of 17% of missed reactions.


- 427 patients (mean age = 49.8 years) underwent PT.
- 82% were female.
- 54% reported an atopic history.
- The most common occupation was health care worker.
- The top 23 allergens were identified. Of those, 9 allergens were not included in the TT

Mucci et al. What Allergens Would You Miss? Utilization of T.R.U.E.* Test Versus Expanded Patch Test Panels for Allergic Contact Dermatitis. A 5-year, Multi-Center Review from Allergy Practices. JACI abstract VOLUME 129, ISSUE 2, SUPPLEMENT , AB35, FEBRUARY 01, 2012

Plant

• Urushiol

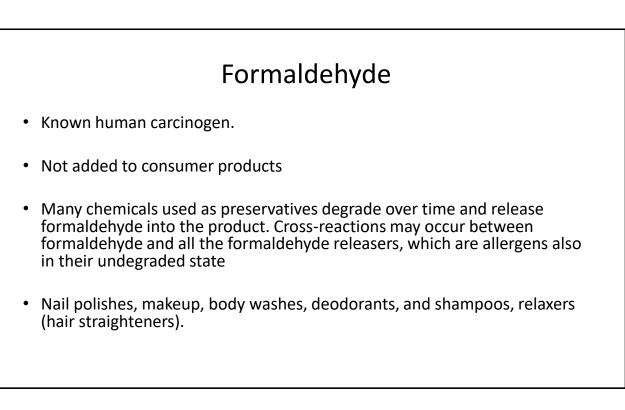
- Found in poison ivy, poison oak, and poison sumac.
- 50% of people will react to poison ivy in nature
- 75% will react to patch testing with urushiol.
- 25 to 40 million Americans require medical treatment after exposure.

15

Metals

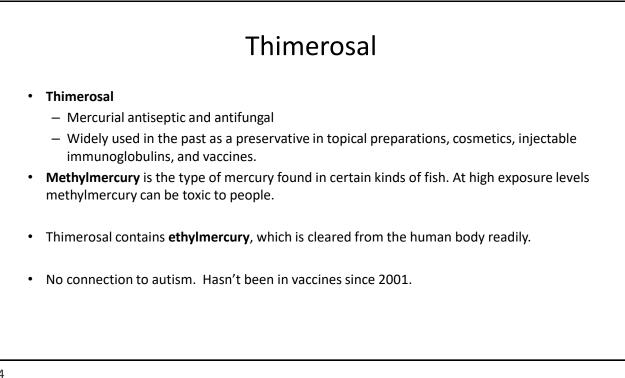
Nickel

- Jewelry, belt buckles etc.
- Ingestion of foods in highly allergic: chocolate, nuts, oats, green beans, peas, canned foods
- Implanted metal devices.


Cobalt Metals, cosmetics, especially eye makeup, and blue tattoo pigments. Surgical stainless steel and the cobaltchrome-molybdenum alloys used in orthopedic implants have high cobalt content. Spot test **Cobalt** spot test - Disodium-1-nitroso-2-naphthol-3,6disulfonate was able to identify cobalt release at 8.3 ppm. 10 x .4ML TEST SWABS & Red/pink is positive, yellow (baseline color) 3.7ML CLEAR COAT is negative.

Chromium (potassium dichromate)

- Chromium is used in industry.
- Cement, leather tanning, paints), in various types of stainless steel.
- Green coloring agent in soaps, cosmetics, and tattoo pigments.


Preservatives

Isothiazolinones

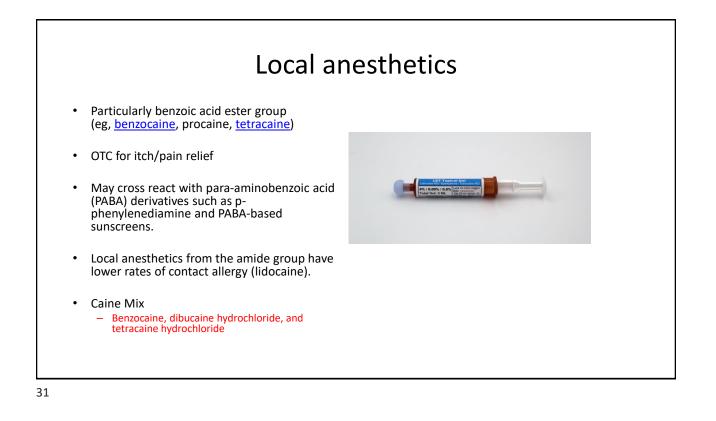
- Methylchloroisothiazolinone and methylisothiazolinone
 - Rates increasing to around 8% of patch test patients.
 - Wash-off personal care products, such as hair care products and body washes, moisturizing creams/lotions, pr emoistened toilet wipes, and laundry detergents.
 - Both together is called Kanthon CG.

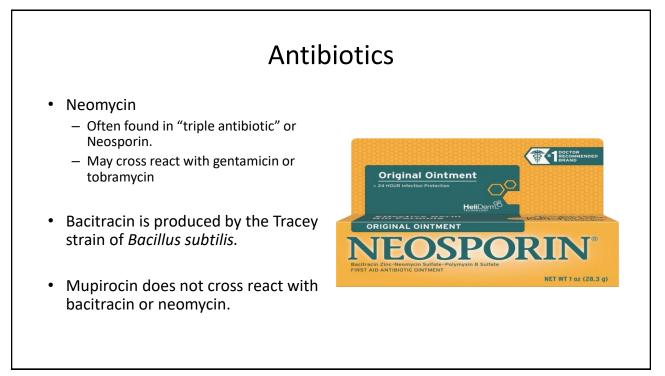
Fragrance

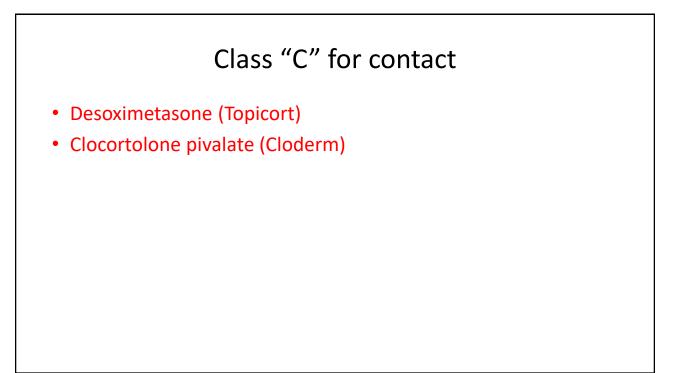
Fragrance mix 1 cinnamic alcohol, cinnamic aldehyde, hydroxy citronellal, amyl cinnamaldehyde, geraniol, eugenol, isoeugenol, and oakmoss absolute) Fragrance mix 2 Lyral, Citral, citronellol, farnesol, coumarin, cinnamic aldehyde. Myroxylon pereirae (balsam of Peru) Can have masking agents even in "fragrance free" or unscented". Fragrance producers don't have to list specific ingredients.

Hair products

Permanent hair dyes/black dye, henna tattoos. Also used in black rubbers, photographic developers, fabric dyes, epoxy resin curing agents, oils and greases, and gasoline.


Cocamidopropyl betaine

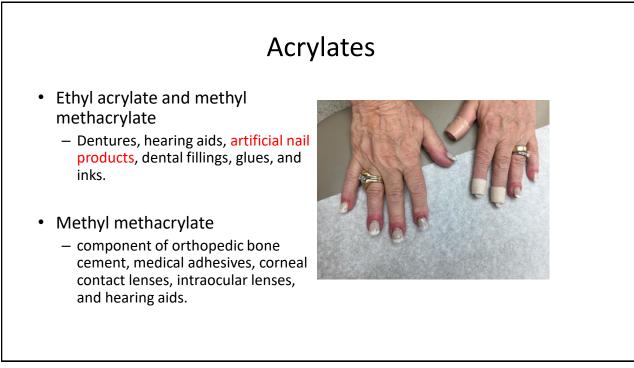

- Surfactant derived from coconut oil and dimethylaminopropylamine.
- "No More Tears" shampoo.
- Foaming agent in many wash-off personal care products.
- Shampoos, body washes, toothpastes), an antistatic agent in conditioners, and an emulsifier in cosmetics.

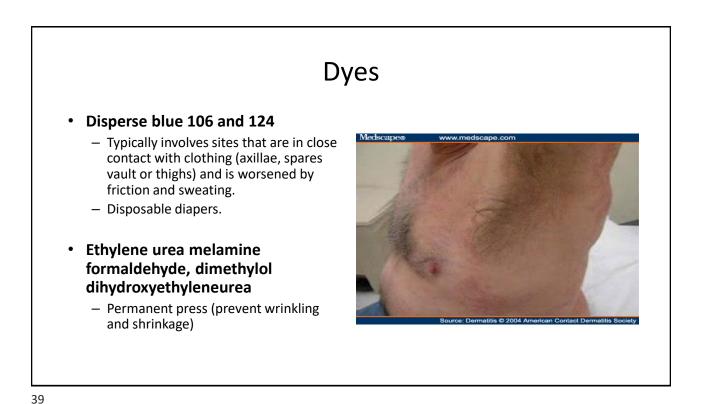

29

Propylene glycol Viscous, colorless, and virtually Propylene glycol free: odorless alcohol. Low: Vehicle, humectant (reduces moisture Desonide ointment loss), and preservative. hydrocortisone-17-butyrate lipid cream clocortolone cream Topical steroid preparations to increase triamcinolone spray penetration, deodorant, personal lubricants, conduction gels. High: halcinonide ointment Can be irritant as well as allergic. fluocinonide oil clobetasol spray

Class	Example	Glucocorticoid	Structure
A	Hydrocortisone type without substitution on the D-ring or C17 carbon chain, but including C17 and/or C21 acetate esters.	Hydrocortisone (acetate, succinate, phosphate) Hydrocortisone (acetate, succinate, phosphate) Methylprednisolone acetate (acetate, succinate, phosphate) Prednisolone Prednisolone Traccortol pivalate	но он
В	Triamcinolone acetonide type C16,17-cia, diol or ketal chain.	Amcinonide Budesonide Desonide Flunisolide Fluocinolone acetonide Fluocinonide Halcinonide Triamcinolone acetonide	HO F O
с	Betamethasone type C16 alkyl substitution.	Betamethasone Desoxymethasone Dexamethasone Paramethasone Flucortolone	HO HO F
D	Hydrocortisone-17-butyrate type C17 and/or C21 long-chain ester.	Beclomethasone dipropionate (D1) Betamethasone dipropionate (D1) Clobethasone 17 butyrate (D1) Clobethasone 17 butyrate (D1) Clobetasone 17 propyonate (D1) Fluticasone, Mometasone and Prednicarbate (D2 Hydrocortisone 17-propionate(D2) Hydrocortisone 17-propionate(D2) Methylprednisolone Aceponate (D2)	HO HO CR

Produced by bees as an adhesive and sealant for small open spaces when building their hives. Contains approximately 180 different substances. Lip care products. May cross react with balsam of Peru, with which it shares more than 20 substances, and fragrances. Synthetic beeswax should not cross react.


<text><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>


Adhesives

Colophony

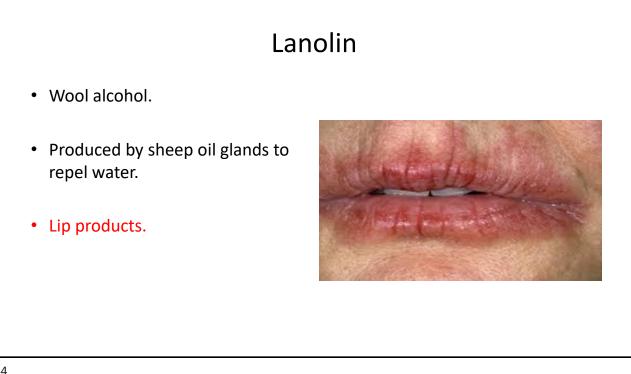
- Rosin is derived from the sap of pine trees.
- Adhesive bandages, plasticizers, fabrics, asphalt/cements, chewing gum, leather cleaners, photo paper coating, mascaras, and newsprint.
- Phenol-formaldehyde resins
 - Neoprene sleeves/braces, wetsuits, glued leather.
- Epoxy resin
 - Sporting goods, vehicle parts.

Other tattoo reactions

- Skin infection
 - Impetigo
 - Cellulitis
 - HSV
 - Warts
 - Atypical mycobacteria (photo)
 - Serious blood borne (HIV, hepatitis)
- Photo-aggravated
 - Cadmium (yellow)
- Granulomatous
- Lichenoid
- Pseudolymphomatous

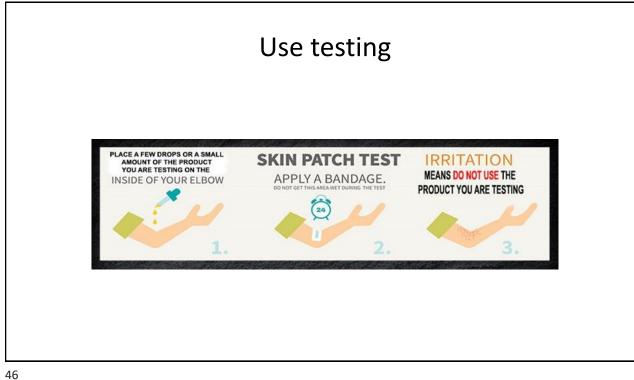
 Plum to red colored nodules and plaques.
- MRI burns from iron oxide (eyebrows)

41


Granulomatous

Dimethyl fumarate

- Used for antifungal (preventing mold) properties for furniture or shoes.
- "Sofa dermatitis."
- Saches are stapled to underside of furniture.



Allergens Of The Year (American Contact Dermatitis Society)

- 2023 Lanolin
- 2022 Aluminum
 - Antiperspirants, adjuvants
 - 2021 Acetophenone azine - shin pads and footwear containing the foam elastomer ethyl vinyl acetate
- 2020 Isobornyl Acrylate
 - adhesive in medical devices such as diabetic pumps.
- 2019 Parabens (Non) Allergen
 - most common preservative but least likely to cause allergic contact dermatitis.
- 2018 Propylene Glycol •
- 2017 Alkyl Glucoside
- surfactant in cosemtics.
- 2016 Cobalt
- 2015 Formaldehyde
- 2014 Benzophenones
 - fragrance enhancer (prolongs fragrances

- 2013 Methylisothiazolinone
- 2012 Acrylate
- 2011 Dimethyl fumarate
- 2010 Neomycin
- 2009 Mixed dialkyl thiourea
- 2008 Nickel
- 2007 Fragrance
- 2006 p-Phenylenediamine
- 2005 Corticosteroids
- 2004 Cocamidopropyl betaine
- 2003 Bacitracin
- 2002 Thimerosal (highlighted for not being a significant issue).
- 2001 Gold
- 2000 Disperse Blue Dyes

Extended Panels

- North American 80
- Bakery series
- Cosmetic series
- Cutaneous adverse drug reaction series
- Corticosteroid series
- Dental materials patients
- Dental materials staff
- Dental screening series
- Epoxy series
- European series
- Fragrance series
- Hairdressing series

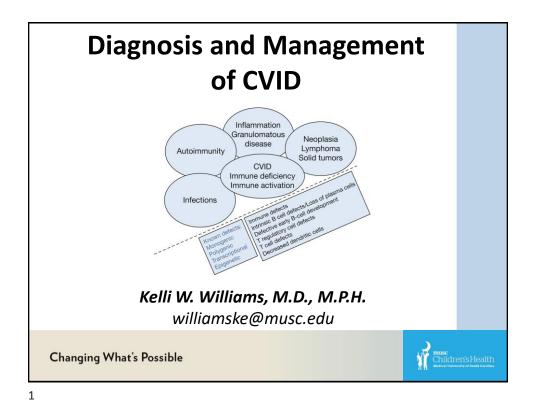
- Isocyanate series
- International series
- Leg ulcer series
- Acrylate series
- Metal series
- Acrylate nail series
- Acrylate printing series
- Oil and cooling fluid series
- Plastic and glue series
- Plant series
- Rubber additive series
- Shoe series
- Sunscreen series
- Textile colors and finish series

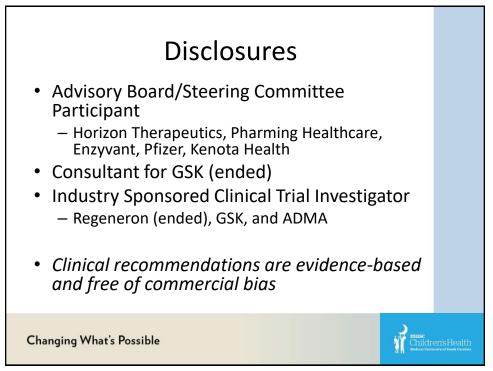
47

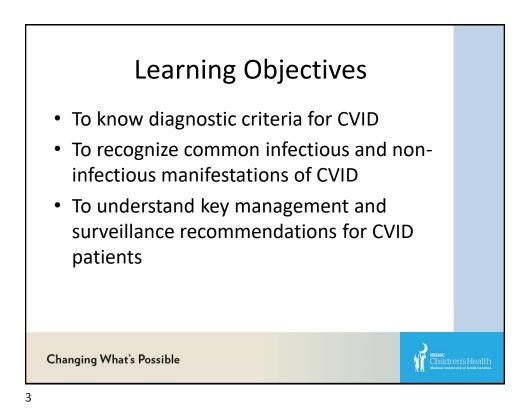
Top 5 Clinical Pearls

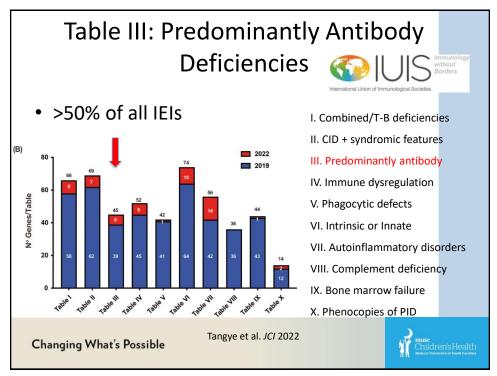
- 1. Contact allergy is not mutually exclusive.
- 2. Avoid vicious cycle: Topical steroid classes and lanolin on the lips.
- 3. "C" for "C"ontact allergy to steroids.
- 4. Be aware of what is commonly tested for and what is not.
- 5. Consider use testing, avoidance and reintroduction.

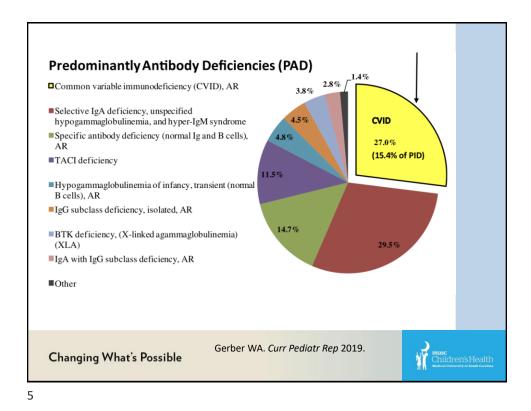
74th PAAA Annual Meeting

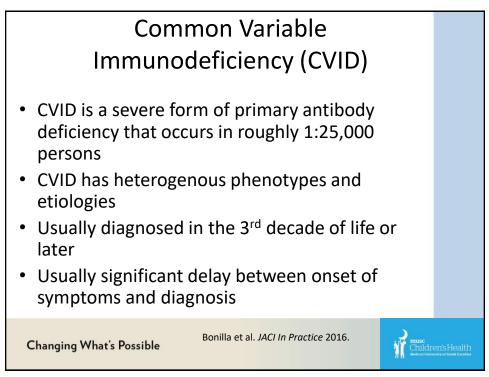

JUNE 23-25, 2023 The Hotel Hershey, Hershey, PA

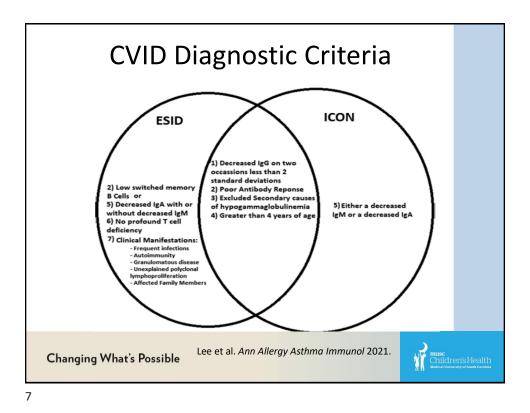


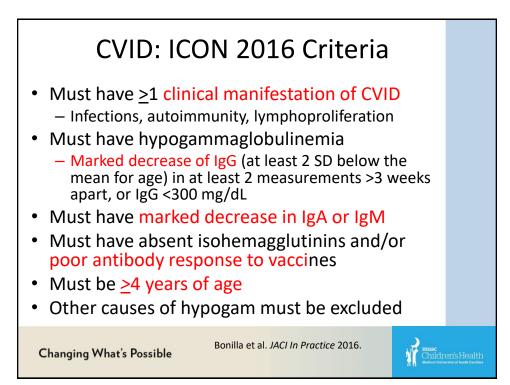

CVID- Evaluation and Management

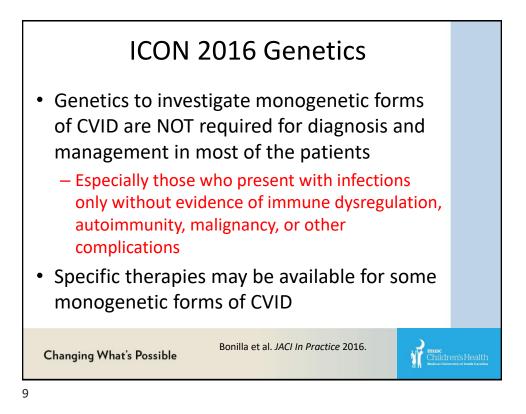

Presented by: Kelli Williams, MD, MPH

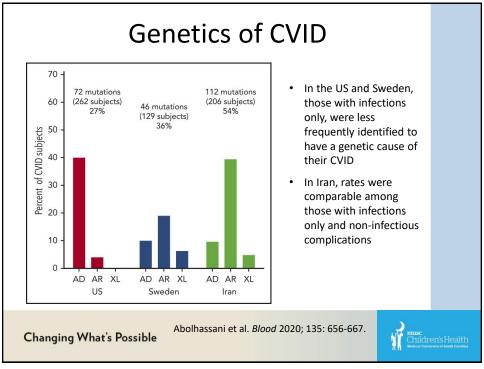

> Friday, June 23, 2023 8:45 a.m. – 9:30 a.m.

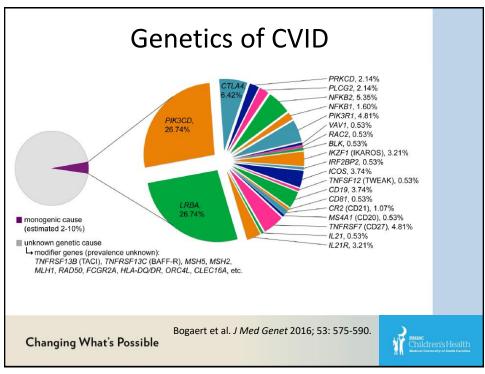


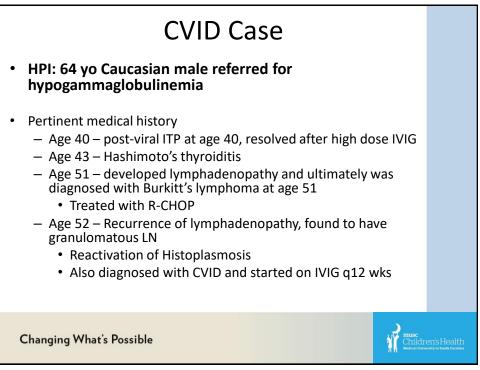


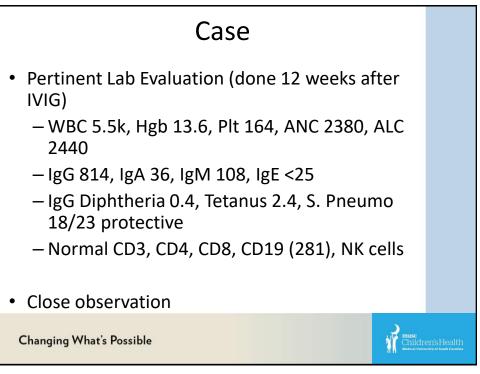


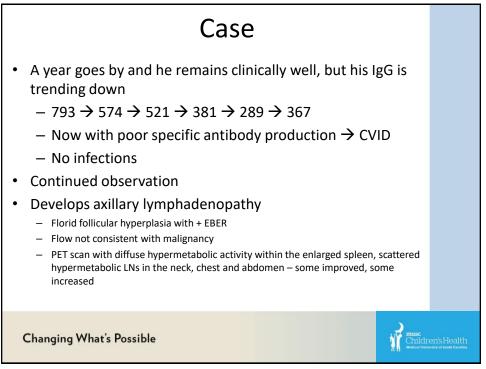


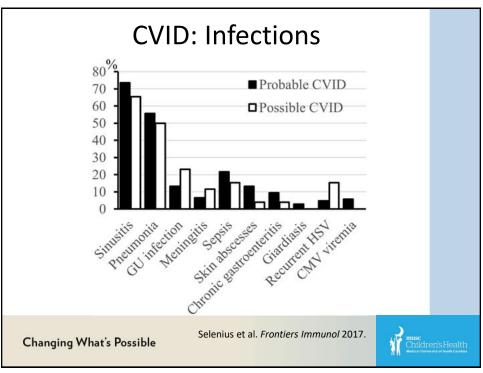


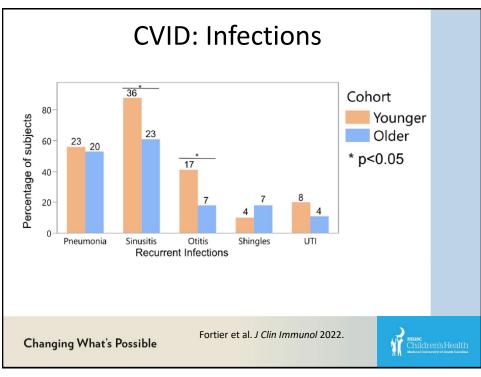


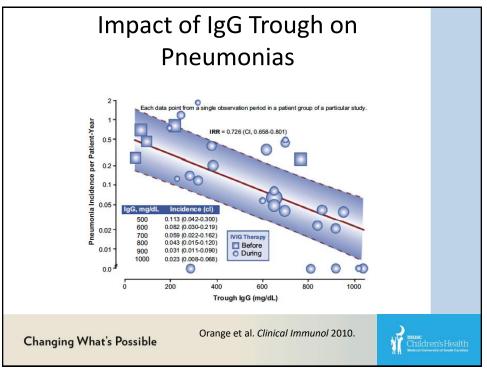


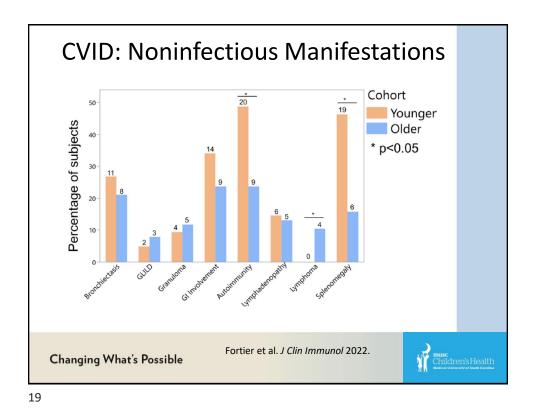


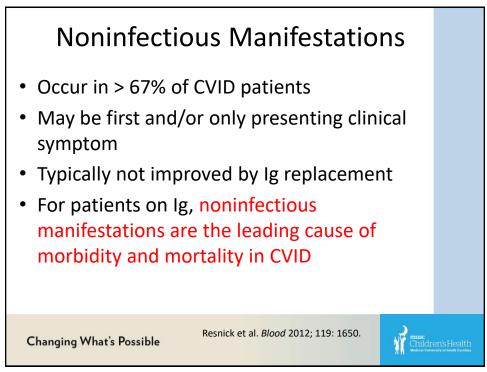


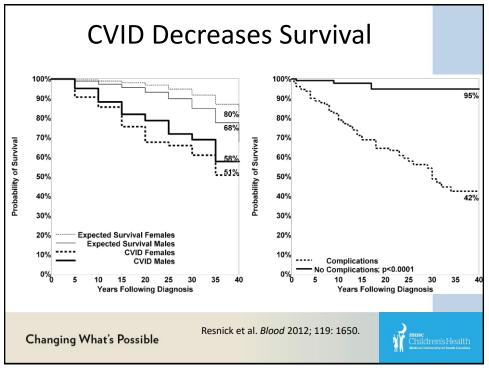


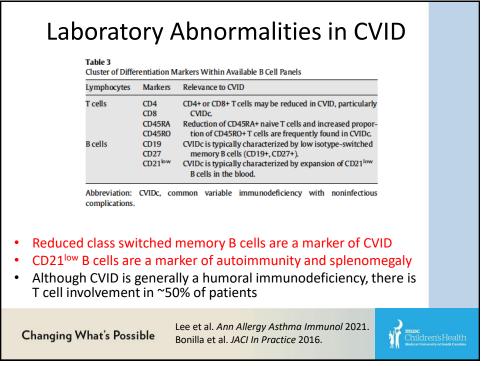


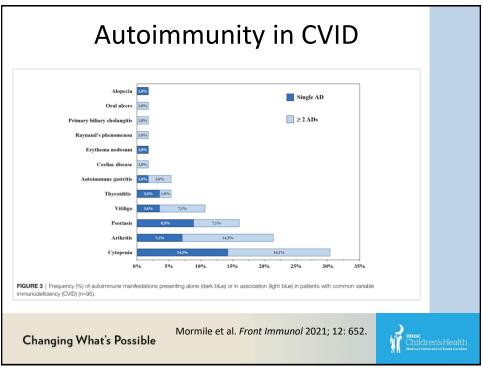


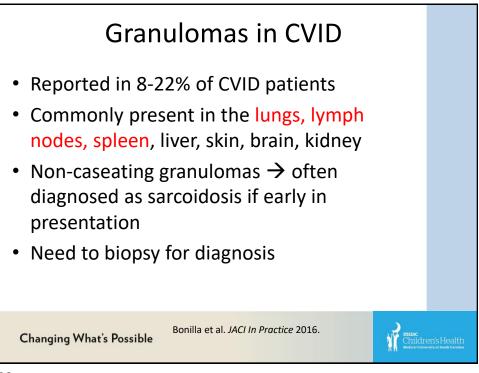

CVID Complications

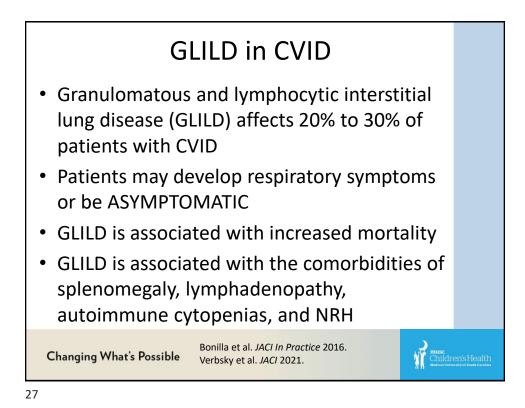

	Numbers	Percentage
nfections	428	90
Autoimmunity	97	25
ung impairment	88	24
Gastrointestinal disease	51	14
Malabsorption	31	5
ymphoid malignancy	36	10
Previous splenectomy	31	8
Granulomatous disease	31	8
Other cancers	21	6
Granulomatous disease	31 21	8
hanging What's Possible	Cunningham-Rundles, C. <i>Blood</i> 20	10; 116: 7.

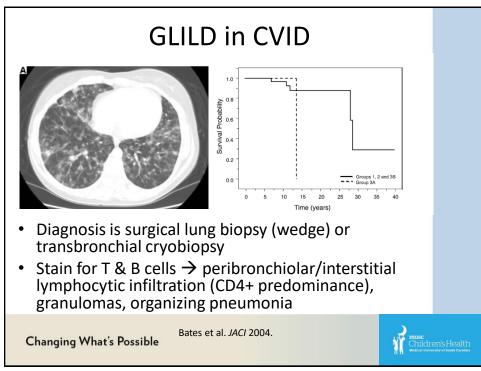






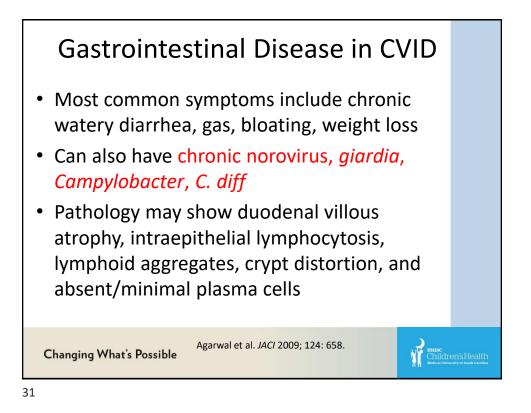

Autoimmunity in CVID								
Autoimmunity	134	28.6						
ITP	67	14.2						
AIHA	33	7						
Evans syndrome	20	4.2						
Rheumatoid arthritis	15	3.2						
Anti-IgA antibody	7	1.5						
Alopecia	Alopecia 5 1.1							
Neutropenia, pernicious anemia, anticardiolipin antibody, antiphospholipid syndrome, diabetes mellitus, juvenile rheumatoid arthritis, uveitis, multiple sclerosis, systemic lupus erythematosis, autoimmune thyroid disease, lichen planus, vasculitis, vitiligo, psoriasis	syndrome, diabetes mellitus, juvenile rheumatoid arthritis, uveitis, multiple sclerosis, systemic lupus erythematosis, autoimmune thyroid disease, lichen planus, vasculitis,							
First line treatment for ITP: IVIG + ster	oids							
 Second line treatment for ITP: weekly rituximab (375mg/m2) for 4 weeks 								
Changing What's Possible Resnick et al. <i>Blood</i> 2012; 119: 1650.								


Lymphoproliferation in CVID


- Chronic benign lymphadenopathy, hepatomegaly, splenomegaly, organ-specific lymphoid hyperplasia
- Excisional LN biopsy is Preferred, not FNA, not PET-CT

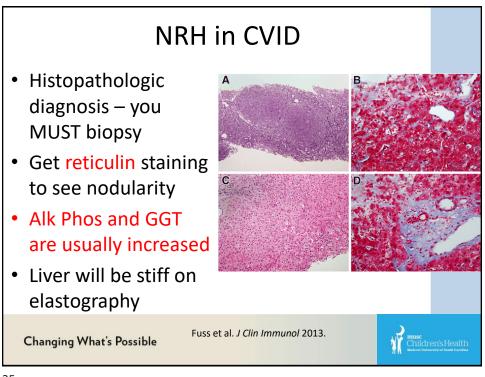
Changing What's Possible

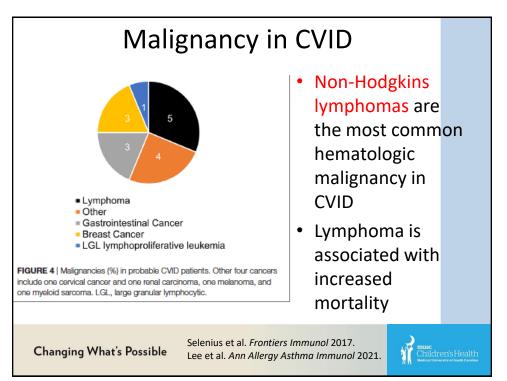
Selenius et al. Frontiers Immunol 2017. Lee et al. Ann Allergy Asthma Immunol 2021.

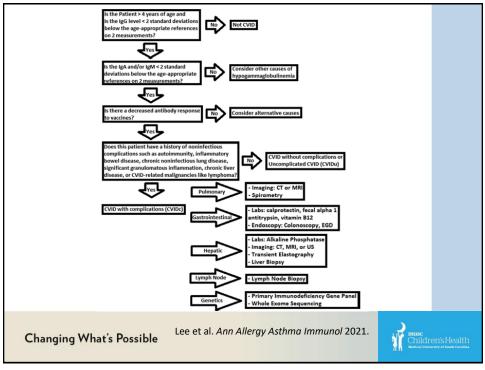


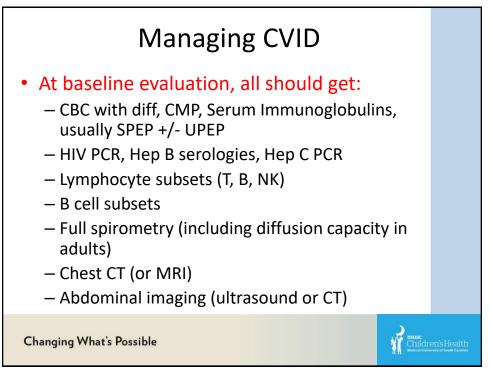


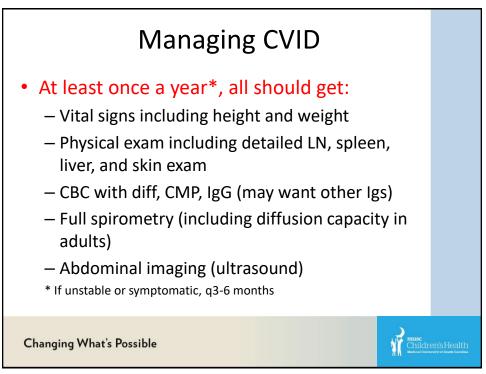
			PFTs in GLILD								
TABLE 4 Lung function p	parameters.										
	Controls <i>n</i> = 125 Median (IQR)	GLILD <i>n</i> = 47 Median (IQR)	ulLD <i>n</i> = 26 Median (IQR)	<i>p value</i> (GLILD vs. ctrls)	<i>p value</i> (uILD vs. GLILD)	<i>p value</i> (uILD vs. ctris)					
FEV1 (% of predicted)	102 (89–111)	88 (72–105)	103 (89–110)	0.02	0.03 0.15	0.94					
FVC (% of predicted)	104 (92–116)	88 (72–103)	104 (93–113)	<0.001 <0.001	0.01	0.72					
TLC (% of predicted)	102 (94–108)	87 (75–102)	93 (87–104)	<0.001 <0.001	0.32	0.03 0.05					
DLCO (% of predicted)	83 (75–97)	61 (52-80)	73 (65–86)	<0.001 <0.001	0.008	0.02 0.07					
 Patients with GLILD typically have lower TLC and DLCO 											
	lco Iso have										

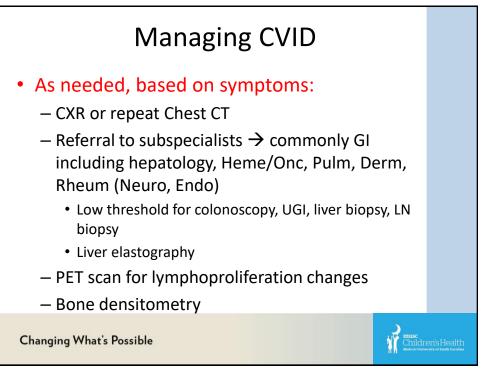


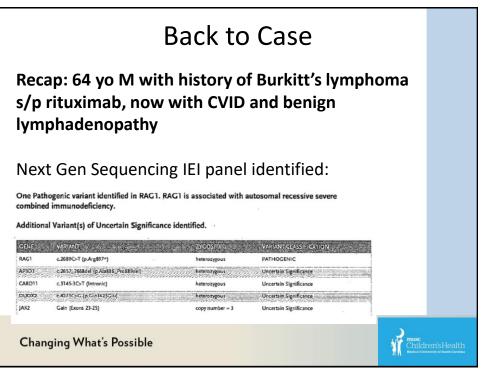


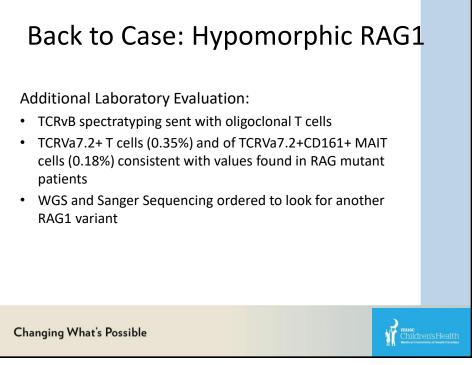


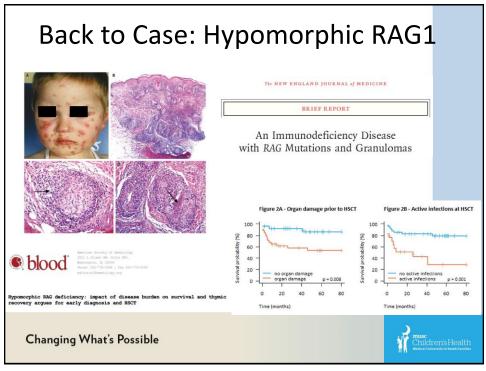


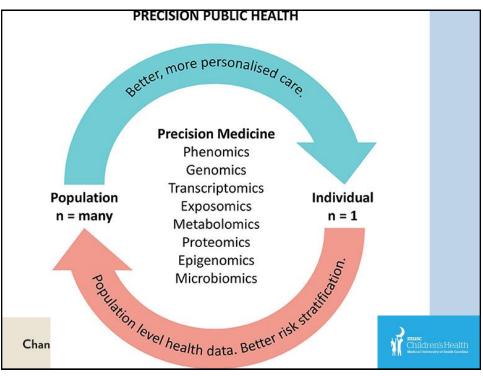


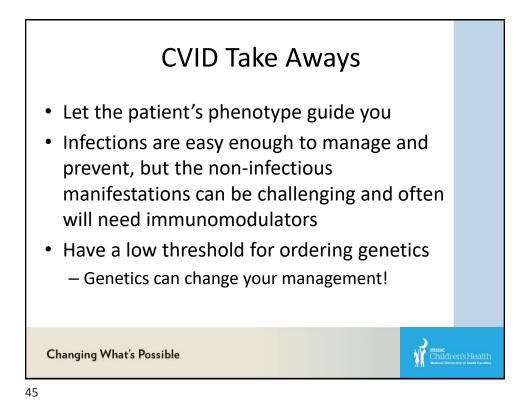


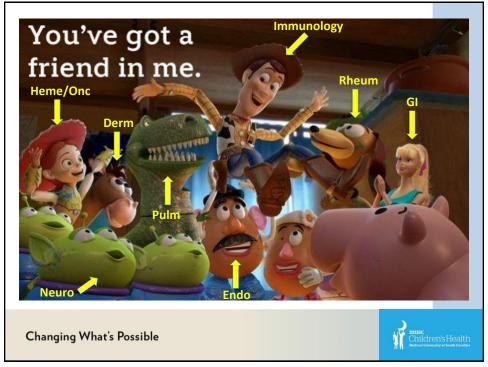












74th PAAA Annual Meeting

JUNE 23-25, 2023 The Hotel Hershey, Hershey, PA

Diagnosing and Managing Anaphylaxis in 2023

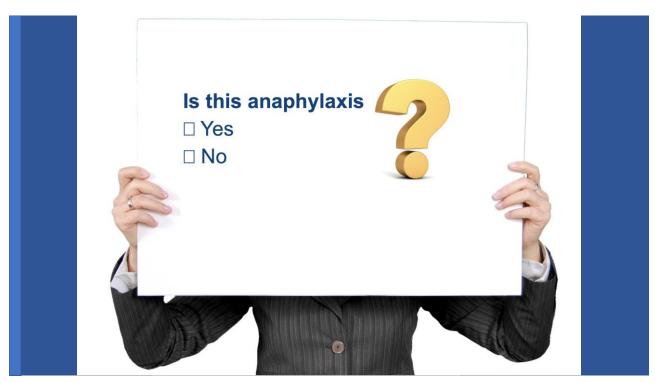
Presented by: Marcus Shaker, MD, MS, FAAP, FAAAAI, FACAAI

> Friday, June 23, 2023 9:30 a.m. – 10:15 a.m.

Diagnosing and Managing Anaphylaxis in 2023

New Discoveries Meet Time Tested Paradigms of Care

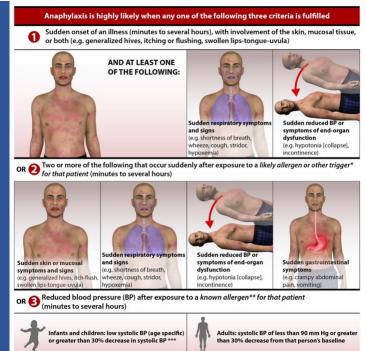
Marcus Shaker, MD, MS Professor of Pediatric and Medicine Dartmouth Geisel School of Medicine


Learning Objectives

Upon completion of this activity, participants should be able to:

- Compare and contrast diagnostic criteria for anaphylaxis
- Discuss common causes & subsets of anaphylaxis
- Formulate an approach to the evaluation of an elevated serum tryptase
- Incorporate anaphylaxis management strategies into practice

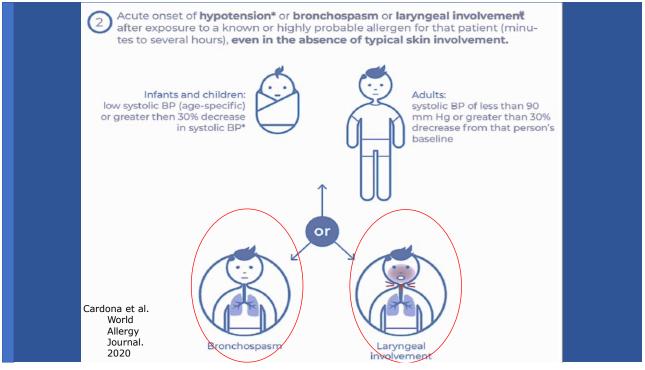
J.L. is an 18 year old woman from Virginia with PMH of EDS and POTS
Cough, respiratory distress, and wheezing started 10 minutes after starting a dance routine during a class (3 hours after lunch fajita). Associated sx: splotchy rash on upper chest and sense of throat tightness
EMS transport: nebulized albuterol + IV line
Vitals: T 36.7C, O₂ sat 88%, HR 167, RR 35, BP 93/60 mmHg
PE: anxious, respiratory distress with audible wheeze (inspiratory and expiratory), urticarial rash
Labs: Acute Tryptase: 8.4; Baseline Tryptase: 6.1



Anaphylaxis

- An acute, potentially lifethreatening systemic allergic reaction
- Diagnostic criteria are not perfect and fulfilling diagnostic criteria are not required for epinephrine use to treat an allergic reaction.
- Lifetime prevalence: 1.6% 5.1%

Shaker M, Wallace D, Golden D, et al. Anaphylaxis – A 2020 Practice Parameter Update, Systematic Review, and GRADE Analysis. JACI 2020



Acute onset of an illness (minutes to several hours) with involvement of the skin, mucosal tissue, or both (e.g. generalized hives, pruritus or flushing, swollen lips-tongue-uvula) A. Airway/Breathing: Respiratory compromise. (e.g. dyspnea, wheeze-bronchospasm, stridor, reduced PEF, hypoxemia) and at least one of the following B. Circulation: Reduced BP or associated symptoms of end-organ dysfunction. (e.g. hypotonia [collapse], syncope, incontinence)

C. Other: Severe gastrointestinal symptoms.

(e.g. severe crampy abdominal pain, repetitive vomiting), especially after exposure to non-food allergens)

Cardona et al. World Allergy Journal. 2020

Severity of Anaphylaxis –

PMID: 33476673

Severity grading system for acute allergic reactions: A multidisciplinary Delphi study

Check for updates

Timothy E. Dribin, MD,^{a,b} David Schnadower, MD, MPH,^{a,b} Jonathan M. Spergel, MD, PhD,^c Ronna L. Campbell, MD, PhD,^d Marcus Shaker, MD, MSc,^{e,f} Mark I. Neuman, MD, MPH,^{g,h} Kenneth A. Michelson, MD, MPH,^{g,h} Peter S. Capucilli, MD,ⁱ Carlos A. Camargo, Jr, MD, DrPH,^j David C. Brousseau, MD, MS,^k Susan A. Rudders, MD, MS,^{h,l} Amal H. Assa'ad, MD,^{b,m} Kimberly A. Risma, MD, PhD,^{b,m} Mariana Castells, MD, PhD,ⁿ Lynda C. Schneider, MD,^{h,l} Julie Wang, MD,^o Juhee Lee, MD,^c Rakesh D. Mistry, MD, MS,^p David Vyles, DO, MS,^k Michael Pistiner, MD, MMSc,^q John K. Witry, MS,^a Yin Zhang, MS,^r and Hugh A. Sampson, MD^o Cincinnati, Ohio; Philadelphia, Pa; Rochester, Minn; Hanover, NH; Boston, Mass; and Rochester and New York, NY

	Severity grading sys	stem for acute allergic reactions		
		ether reactions fulfill NIAID/FAAN anaphylaxis diagnostic criteria*		
	(e.g. a reaction can be either Grade 5 a	naphylaxis or a Grade 5 non-anaphylactic reaction)		
	Severity grades**	Clinical criteria (sub-grading system)		
Life threatening allergic reactions	5 ANY Severe: Cardiovascular, Neurologic, Respiratory	Cardiovascular ¹ MILD: Symptoms - weak, dizzy, pre-syncope, palpitations, blurred vision; Infants - tachycardia not related to other cause such as crying, discomfort, or medications MODERATE: hypotension, syncope (collapse); Infants - mottling, cyanosis SEVERE: maphylactis shock, cardiac arrest; Infants - hypotension		
1	ANY Moderate: Cardiovascular, Neurologic, Respiratory OR Severe: Mucosal/angioedema	Nearologic ¹ MILD: Symptoms - confusion, drowsy, sense of impending door; <i>Infants</i> - persistent and unexplained irritability, inconsolability, crying, or decreased activity MODERATE GCS (Glasgow Comma Scale; https://www.mdcalc.com/glasgow-coma-scale-score-gcs) 13-14; <i>Infant</i> lethargie SEVERE: GCS <13, seizure; <i>Infants</i> - new onset hypotonia		
3	ANY Mild: Cardiovascular, Neurologic, Respiratory 2 or more Mild, ANY Moderate:	Respiratory General MILD: Symptoms - chest tightness, dyspnea; Signs - new onset cough MODER-ATE: new onset persistent cough, increased WOB, hypoxemia		
Mild ANY	Skin, Gastrointestinal, Mucosal/angioedema	SEVERE: respiratory failure Largnesa MILD: Symptons - throat tightness or discomfort; Signs - voice change; Infants - barky or croup like cough, hoarse cry MODERATE: stridor win increased WOB SEVERE: stridor with increased WOB (partial or complete upper airway obstruction) Lower airway		
Terms: Symptome: patient and/o mail/or examination findings. $D_{\rm eff}$ children may overlap with normal represent increased reaction sever Definitions Polinities: systolic BP < 50 mm Hg from 1 90 mm Hg from 11 to 17 years. I and other CV symptoms in inflam Adult: estimated or calculated m or systolic BP < 90 mm Hg or - <i>systolic BP</i> < 90 mm Hg dros <i>Increasel work of breathing</i> (W) (inflants), age defined tachypnea ti Hyporeantic: Sport System Size C > 2975 mm To	with an IV vasopressor infusion requirement to maintain a $MAP \ge 65$ g among adults, and age appropriate BPs among children (see pediatric <i>DB</i>): retractions, use of accessory muscles, nasal flaring or grunting hat is not brief or self-resolved	MILD: wherease wherease WOB MODEAT: wherease wherease		

Anaphylaxis Subsets

TABLE II. Clinical criteria for diagnosing persistent, refractory, and biphasic anaphylaxis

Persistent anaphylaxis is highly likely when the following criterion is fulfilled*:

Presence of symptoms and/or examination findings that fulfill the 2006 NIAID/FAAN anaphylaxis criteria that persist for at least 4 hours¹ Refractory anaphylaxis is highly likely when both of the following 2 criteria are fulfilled[†]:

1. Presence of anaphylaxis following appropriate epinephrine dosing *and* symptom-directed medical management (eg, intravenous fluid bolus for hypotension).

2. The initial reaction must be treated with <u>3 or more appropriate doses</u> of epinephrine (or initiation of an intravenous epinephrine infusion).[‡] Biphasic anaphylaxis is highly likely when *all* of the following 4 criteria are fulfilled[§]:

- 1. New /or recurrent symptoms and/or examination findings must fulfill the 2006 NIAID/FAAN anaphylaxis criteria.¹
- 2. Initial symptoms and/or examination findings must completely resolve before the onset of new or recurrent symptoms and/or examination findings.

3. There cannot be allergen reexposure before the onset of new or recurrent symptoms and/or examination findings.

4. New or recurrent symptoms and/or examination findings must occur within 1 to 48 hours from complete resolution of initial symptoms and/or examination findings.

Dribin T, Sampson H, Camargo C, et al. Journal of Allergy Clin Immun Pract 2020

How Often Does Severe Anaphylaxis Occur? The Cross-Canada Experience

• The 2019 Cross-Canada Anaphylaxis Registry evaluated anaphylaxis cases presenting to ED's in 5 Canadian Provinces over a 6-year period, enrolling 3,498 cases

Anaphylaxis Severity	n = 3,948 (%)
Mild	661 (18.9%)
Moderate	2,594 (74.2%)
Severe	240 (6.9%)

Gabrielli et al. Journal of Allergy and Clinical Immunology In Practice. 2019

Anaphylaxis Triggers and Risks

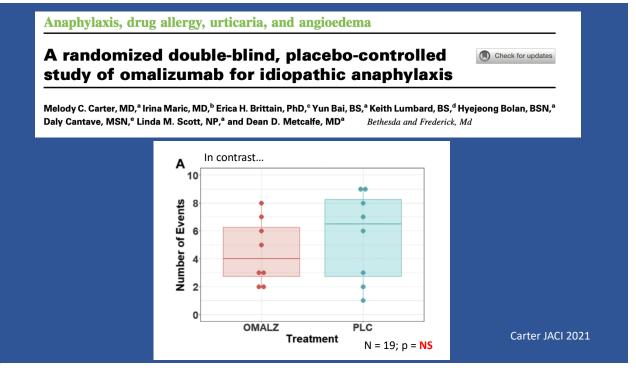
Leading anaphylaxis triggers

- Adults: Medications
 - Antibiotics, NSAIDS, Immunomodulators, Biologics, Anesthetics
- Children/Adolescents: Foods
- All ages: Stinging Insects
- Idiopathic

Risk factors for severe anaphylaxis include

- Cardiovascular disease
- Asthma
- Older age
- Co-morbid conditions
 - Mast cell disorder, betablocker use, ACEi use

Shaker M, Wallace D, Golden D, et al. Anaphylaxis – A 2020 Practice Parameter Update, Systematic Review, and GRADE Analysis. JACI 2020

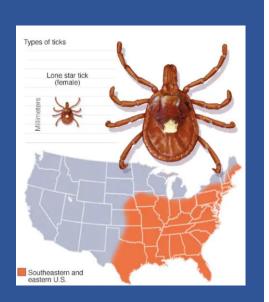

Idiopathic Anaphylaxis (IA)

- Anaphylaxis in the absence of a clear precipitating trigger
 Up to 1/3 of anaphylaxis
- May affect adults and children, but more commonly adults
- Patients with IA have been reported to have circulating activated T cells and to be responsive to prednisone

TABLE IV. Treatment of IA							
Acute	Long-term (preventive)						
Epinephrine	H1-antihistamines						
H1-antihistamines	Prednisone						
Albuterol	Omalizumab						
Prednisone							
Intravenous fluids							

Giannetti et al 2017; Gabrielli 2019

Alpha-gal Syndrome



- Sensitization to the carbohydrate moiety galctose-alpha-1,3 galactose
- Symptoms of delayed anaphylaxis to mammalian meats
- Associated with tick bites and alpha gal sensitization
- Type B blood type antigens may be protective
 - Alpha-gal is related to blood group B

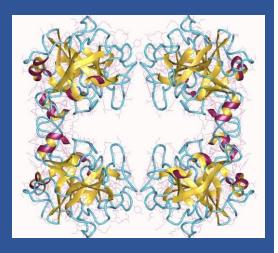
https://web.uri.edu/tickencounter/species/lone-star-tick; Hamsten C et al. JACI 2013; Bellamy P et al. JACI IP 2021

Alpha-gal Syndrome

- Certain occupations such as timber harvesting and forestry may increase tick exposure and alphagal sensitization
- Geography / travel is an important part of the history
- Many patients may be sensitized without a recognized history of symptoms with eating meat
- Clinical history is key

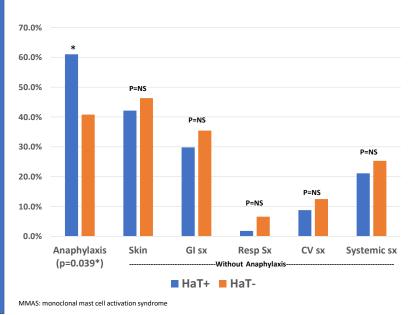
https://www.mayoclinic.org/tick-species; Hamsten C et al. JACI 2013; Bellamy P et al. JACI IP 2021

An unexpected Alpha-gal association



- Alpha-gal slgE measured in 1056 Australian patients referred for CT coronary angiogram for suspected CAD and 100 patients presenting with STEMI.
- Alpha-gal sensitization associated with:
 - Noncalcified plaque (aOR 1.62, p=0.03)
 - Obstructive CAD (aOR, 2.0, p=0.002)
- Alpha-gal sensitization was 12.8-fold greater in patients with STEMI compared to healthy matched controls and 2.2-fold greater in patients with STEMI compared to stable CAD patients

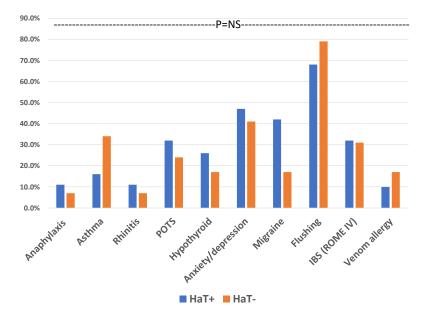
What about elevated baseline tryptase?


Elevated Baseline Serum Tryptase

- Hereditary alpha tryptasemia
 - 90% of individuals with an elevated tryptase
- Mastocytosis
- Myeloid neoplasms
- Hypereosinophilic syndrome
- Advanced kidney disease

Hereditary alpha Tryptasemia (HaT)

- May affect up to 6% of the population
- Increase in baseline tryptase
 - Alpha tryptase copies at TPSAB1 locus
 - Suspect if tryptase > 8 mg/ml
- May increase frequency and severity of allergic reactions
- Variable penetrance



Does HaT Cause Non-Anaphylactic Symptoms?

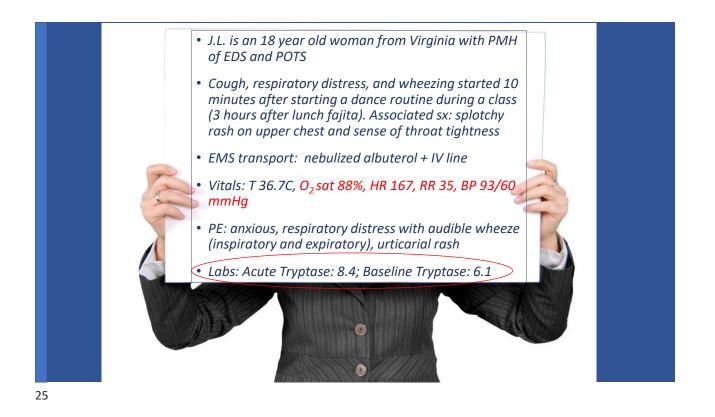
Patients with mastocytosis or MMAS (n=444)

- Multicenter study
- Higher incidence of HaT in patients with mastocytosis(13.3%)
- Apart from anaphylaxis risk for other conditions was not significant elevated

Sordi B et al. JACI 2023

Does HaT Cause Non-Anaphylactic Symptoms?

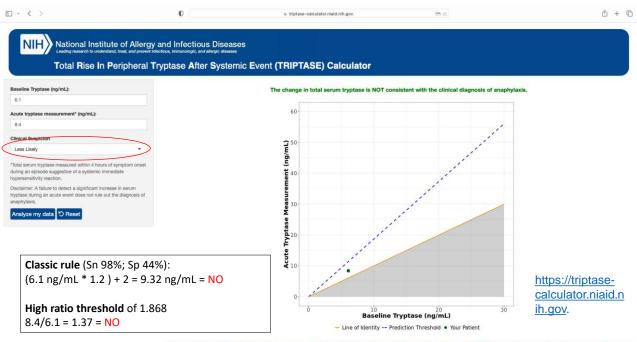
Patients with and without mastocytosis (n=34)


- No significant difference in comorbidities often considered associated with HaT either in patient with or without mastocytosis
- Limitations: small n

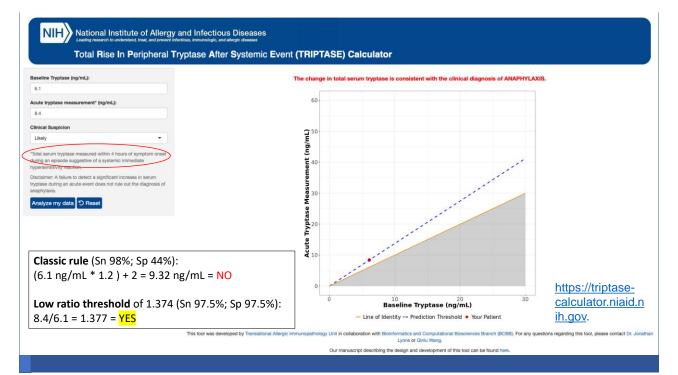
Chollet M, Akin C. JACI 2022

When is Tryptase Elevated? The Evolving Tryptase Rule

- Classic evidence of mast cell activation:
 - Acute tryptase 20% plus 2ng/ml over baseline
- Validated in perioperative anaphylaxis
 - Sn 98%, Sp 44%
 - PPV 98%, NPV 44%
- Variability limits rule
 - ¼ of individuals may exceed this variability on serial measures


- Alternative thresholds with the ratio of acute to baseline levels
- Ratio 1.685
 - Sn 94.4%, Sp 94.4%
- High vs. Low Clinical Suspicion (Sn 97.5, Sp 97.5)
 - High: 1.374
 - Low: 1.868

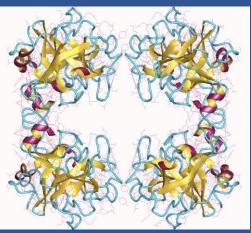
□ - < > ₫ + © Ð a triptase-calculator.niaid.nih.gov 30 National Institute of Allergy and Infectious Diseases NIH Total Rise In Peripheral Tryptase After Systemic Event (TRIPTASE) Calculator The change in total serum tryptase is NOT consistent with the clinical diagnosis of anaphylaxis. ine Tryptase (ng/mL): 6.1 60 Acute tryptase measurement* (ng/mL): Clinical Se 50 (Jm/bu) Possible Total serum tryptase measured within 4 during an episode suggestive of a syste hin 4 hours of svi 40 40 during an ep imer: A failure to detect a significant increase in ser se during an acute event does not rule out the diag Meas alyze my data 🕤 Reset Tryptase N Acute T Classic rule (Sn 98%; Sp 44%): (6.1 ng/mL * 1.2) + 2 = 9.32 ng/mL = NO https://triptasecalculator.niaid.n Ratio threshold of 1.685 (Sn 97.5%; Sp 97.5%): 8.4/6.1 = 1.377 = NO 30 ih.gov. Baseline Tryptase (ng/mL) - Line of Identity -- Prediction Threshold • Your Patient


This tool was developed by Translational Allergic Immunopathology Unit in collaboration with Bioinformatics and Computational Biosciences Branch (BCBB). For any questions regarding this tool, please contact Dr. Jonathar Lyons or Ontu Wang.

Our manuscript describing the design and development of this tool can be found here

This tool was developed by Translational Allergic Immunopathology Unit in collaboration with Bioinformatics and Computational Biosciences Branch (BCBB). For any questions regarding this tool, please contact Dr. Jonathan Lyons or Circlu Wang.

Our manuscript describing the design and development of this tool can be found here.

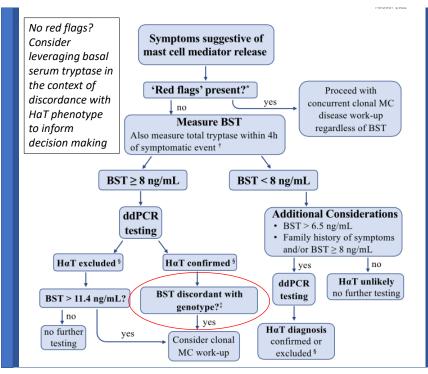


Elevated Baseline Serum Tryptase

- Hereditary alpha tryptasemia
 - 90% of individuals with an elevated tryptase
 - Each TPSAB1 replication increases basal serum tryptase by approximately 9 ng/ml

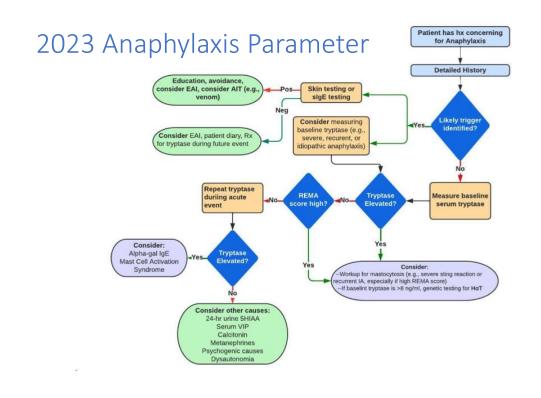
• Mastocytosis

- Myeloid neoplasms
- Hypereosinophilic syndrome
- Advanced kidney disease


Baseline	Vari	able	REMA score	NICAS score
Daseinie	Gender	Male	> +1	+1
Tryptase	Genuer	Female	-1	-1
Elevations:		Absence of urticaria and angioedema	+1	
REMA &		Presence of urticaria and/or angioedema	-2	
NICAS	Clinical Symptoms During Attack	Presyncope or syncope	+3	
		Absence of angioedema	>	+1
		Flushing		-1
Score > 2 suggestive		Urticaria		+1
		Syncope	>	+3
of clonal mast cell		< 15 ng/mL	-1	
disease	Truntago	>25 ng/ml	+2	
	Tryptase	< 11.4 ng/mL		-1
		> 11.4 ng/mL		+3
	Allele-specific PCR	Negative		-1
2023 Anaphylaxis Parameter	(D816V)	Positive		+3

Baseline Tryptase Elevations

TPSAB1 copy number can be used to interpret the baseline tryptase level


0 4.1 (0 - 10.4) 11.4 20 1 13.6 (6.5 - 33.9) 36.2 40 2 22.5 (10.5 - 39.5) 62.2 60 3 27.3 (23.4 - 40) 88.8 80 4 37 (25.5 - 62.7) 115.9 100 6 87 (N/A) 171.2 140 10 133 (110 - 156) 285.1 220	Additional TPSAB1 copy number	Basal serum tryptase (ng/mL), median (range)	Upper 95% predictive interval	Upper limit using (basal serum tryptase) / 1+copy equation
2 22.5 (10.5 - 39.5) 62.2 60 3 27.3 (23.4 - 40) 88.8 80 4 37 (25.5 - 62.7) 115.9 100 6 87 (N/A) 171.2 140			11.4	
3 27.3 (23.4 - 40) 88.8 80 4 37 (25.5 - 62.7) 115.9 100 6 87 (N/A) 171.2 140	1	13.6 (6.5 - 33.9)	36.2	40
4 37 (25.5 - 62.7) 115.9 100 6 87 (N/A) 171.2 140	2	22.5 (10.5 - 39.5)	62.2	60
6 87 (N/A) 171.2 140	3	27.3 (23.4 - 40)	88.8	80
	4	37 (25.5 - 62.7)	115.9	100
10 133 (110 - 156) 285.1 220	6	87 (N/A)	171.2	140
	10	133 (110 - 156)	285.1	220

31

Red flags may include but are not limited to hepatosplenomegaly, lymphadenopathy, CBC anomalies (thrombocytopenia, anemia, polycythemia, neutrophilia, eosinophilia with AEC > 1500), severe and/or recurrent anaphylaxis (in particular idiopathic or Hymenoptera), urticaria pigmentosa, premature fracture

Lyons 2022

A Few Pearls On The Management of Anaphylaxis Practice parameter

Anaphylaxis—a 2020 practice parameter update, systematic review, and Grading of Recommendations, Assessment, Development and Evaluation (GRADE) analysis

- Topics were selected in coordination with the AAAAI and ACAAI
- Topics were selected because there was a critical need to inform practice in two major domains:
 - (1) To identify risk factors for biphasic anaphylaxis (to inform management, preparedness, and education), and
 - (2) To understand if giving patients glucocorticoids and/or antihistamines prevents anaphylaxis.

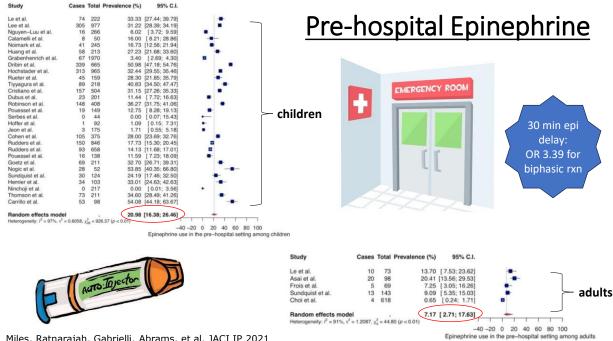
Shaker M, Wallace D, Golden D, et al. Anaphylaxis – A 2020 Practice Parameter Update, Systematic Review, and GRADE Analysis. JACI 2020

35

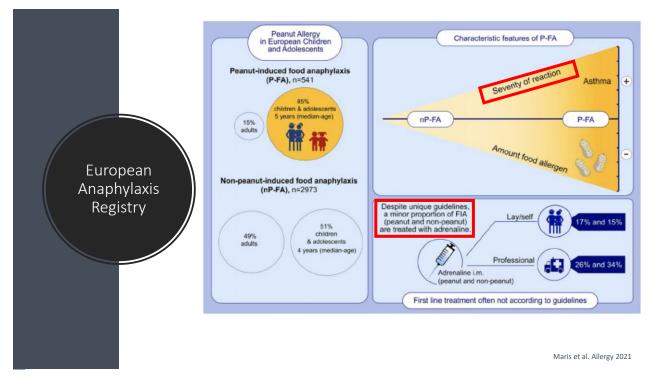
Severe anaphylaxis

	Severe unupriyiums									
1		Biph	asic	No Bip	hasic		Peto Odds Ratio	Peto Od	ds Ratio	
`_	Study or Subgroup	Events	Total	Events	Total	Weight	Peto, Fixed, 95% Cl	Peto, Fixe	d, 95% CI	
	Brown 2013	22	49	72	266	66.0%	2.34 [1.20, 4.54]			
	Confino-Cohen 2010	0	11	11	120	5.9 %	0.31 [0.03, 2.82]			
	Lee 2000	6	6	90	99	3.4%	3.16 [0.17, 59.06]			_
	Manuyakorn 2015	12	15	47	62	16.6%	1.26 [0.34, 4.73]			
	Vezir 2013	4	5	28	91	8.1%	8.96 [1.34, 59.87]			-
	Total (95% CI)		86		638	100%	2.11 [1.23, 3.61]		•	
	Total Events	44		248					-	
	Heterogeneity: Chi ² = 5.8 Test for overall effect Z =	, ,	,	; I ² = 32%			0.01	0.1 1 Decreased Risk	10 Increased Risk	100

> 1 dose of epinephrine

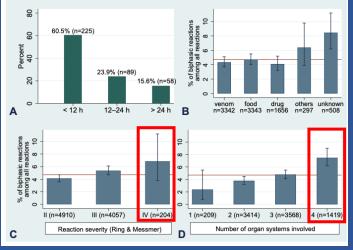

в		Biph	asic	No Bip	ohasic		Peto Odds Ratio	Peto Odds	Ratio	
	Study or Subgroup	Events	5 Total	Events	Total	Weight	Peto, Fixed, 95% Cl	Peto, Fixed, 9	95% CI	
	Alqurashi 2015	10	71	27	413	37.2%	2.91 [1.13, 7.49]		_	
	Inoue 2013	2	2	1	59	0.8%	9.56E8 [1.49E6, 6.13E11]			•
	Lee 2017	6	36	73	836	24.7%	2.62 [0.82, 8.36]	-		
	Mehr 2009	7	12	21	95	18.0%	6.41 [1.65, 24.96]			
	Scranton 2009	9	14	8	46	19.2%	9.69 [2.60, 36.14]		_	
	Total (95% CI)		135		1449	100%	4.82 [2.70, 8.58]		•	
	Total Events	34		130			L	1	1	
	Heterogeneity: Chi ² = 2	36.98, df	f=4 (P	< 0.00001	1); l ² = 8	9%	0.01	0.1 1	10	100
	Test for overall effect Z	2 = 5.33 (P < 0.0	0001)				Decreased Risk	Increased Risk	

Biphasic Anaphylaxis


Additional Outcomes with statistically significant effect size

Risk Factors	Odds Ratio (CI)	Evidence Certainty	Heterogeneity
Wide pulse pressures	2.11 (1.32, 3.37)	Very low	Low
Drug as trigger in pts <18 yrs.	2.35 (0.16, 4.65)	Very low	Moderate
Unknown trigger	1.63 (1.13, 2.33)	Very low	Moderate
Cutaneous symptoms	2.54 (1.25, 5.15)	Very low	Low

Shaker M, Wallace D, Golden D, et al. Anaphylaxis – A 2020 Practice Parameter Update, Systematic Review, and GRADE Analysis, JACI 2020



Miles, Ratnarajah, Gabrielli, Abrams, et al. JACI IP 2021

International Anaphylaxis Registry: Biphasic Risks

- Reaction severity
- Multi-organ involvement
- Peanut or tree nut
- Unknown elicitor
- Exercise as a co-factor
- Chronic urticaria
- Delay in initial symptoms
- Antihistamine treatment

Kraft et al. JACI IP Nov-Dec 2020

Biphasic Anaphylaxis Risk Factors

Question 1Recommendation 1: The guideline suggests that a clinician incorporate
severity of anaphylaxis presentation and/or the administration of more
than one dose of epinephrine for the treatment of initial anaphylaxis as a
guide to determining a patient's risk for developing biphasic anaphylaxis

<u>Recommendation 2</u>: The guideline suggests in favor of extended clinical observation in a setting capable of managing anaphylaxis (to detect a biphasic reaction) for patients with resolved severe anaphylaxis and/or those who need more than one dose of epinephrine

Conditional Recommendations; Very Low Certainty Evidence

Shaker M, Wallace D, Golden D, et al. Anaphylaxis – A 2020 Practice Parameter Update, Systematic Review, and GRADE Analysis. JACI 2020

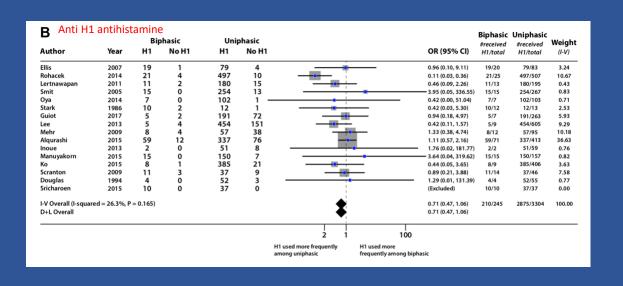
Antihistamines and glucocorticoids are commonly used to prevent biphasic anaphylaxis, but do they work?

The Cross-Canada Experience

- Prehospital treatment with epinephrine (aOR 0.23, 95% CI 0.14-0.38) and antihistamine (aOR, 0.61; 95% CI 0.44-0.85) decreased the likelihood of multiple epinephrine doses in the ED
- However, prehospital treatment with corticosteroids increased risk of ICU or hospital admission (aOR, 2.84, 95% CI, 1.55-6.97).

Gabrielli et al. Journal of Allergy and Clinical Immunology In Practice. 2019

International Anaphylaxis Registry: Biphasic Risks


	OR for occurrence of biphasic reactions	95% CI	P value
(A) Multivariate analysis (n = 7328)*			
Treatment			
Adrenaline	0.91	[0.71-1.16]	.44
Corticosteroids	1	[0.76-1.31]	.996
Antihistamines	1.52	[1.14-2.02]	.005
Severity grade III+IV vs II	1.35	[1.09-1.68]	.006
(B) Multivariate analysis (n = 7111) [†]			
Treatmentt			
Antihistamines only $(n = 676)$	1.99	[1.17-3.39]	.011
Corticosteroids only $(n = 539)$	1.14	[0.62-2.12]	.66
Adrenaline only $(n = 328)$	1.12	[0.55-2.26]	.76
Antihistamines $+$ corticosteroids (n = 3187)	1.6	[1.01-2.54]	.047
Antihistamines $+$ adrenaline (n = 124)	0.22	[0.03-1.63]	.14
Corticosteroids $+$ adrenaline (n = 291)	1.05	[0.5-2.22]	.89
Antihistamines + corticosteroids + adrenaline (n = 1349)	1.58	[0.96-2.59]	.07
Severity grade III + IV vs II	1.34	[1.08-1.67]	.008

Kraft et al. JACI IP Nov-Dec 2020

2020 Anaphylaxis GRADE Guideline

Question 1	What risk factors should clinicians take into consideration in determining the likelihood of hiphasic anaphylaxis?
Question 2	Should antihistamines and/or glucocorticoids be used to prevent biphasic anaphylaxis?
Question 3	Should antihistamine and/or glucocorticoid premedication be used to prevent index hypersensitivity/infusion reactions to chemotherapy?
Question 4	Should antihistamine and/or glucocorticoid premedication be used to prevent recurrent hypersensitivity reactions to radiocontrast media?
Question 5	Should antihistamine and/or glucocorticoid premedication be used to prevent anaphylactic reactions to allergen immunotherapy or other agents?

Glucocort		Bip	hasic No Steroid		phasic No Steroids		OR (95% CI)	Biphasic #received Steroids/N	Uniphasic #received Steroids/N	Weigh (I-V)
Stark	1986	10	2	9	4		2.22 (0.33, 15.18)	10/12	9/13	0.46
Brady	1997	2	0	16	49		33.41 (0.33, 3362.93)	2/2	16/65	0.03
Douglas	1994	4	0	40	15		7.94 (0.09, 732.42)	4/4	40/55	0.09
ee	2000	5	1	84	15		0.89 (0.10, 8.19)	5/6	84/99	0.51
Smit	2005	13	2	245	22		0.58 (0.12, 2.75)	13/15	245/267	1.11
Ellis	2007	7	13	46	37		0.43 (0.16, 1.20)	7/20	46/83	3.71
lirapongsanunuruk	2007	5	0	78	18		6.05 (0.07, 542.06)	5/5	78/96	0.10
Mehr	2009	10	2	75	20	_	1.33 (0.27, 6.58)	10/12	75/95	0.90
Scranton	2009	1	13	6	40	_	0.51 (0.06, 4.66)	1/14	6/46	0.83
ertnawapan	2011	10	3	169	26	<u>_</u>	0.51 (0.13, 1.99)	10/13	169/195	1.56
Poachanukoon	2006	7	1	35	9		1.80 (0.20, 16.57)	7/8	35/44	0.43
Calvani	2011	0	3	25	135		0.34 (0.00, 31.34)	0/3	25/160	0.31
ee	2013	5	4	162	443	<u>+</u>	3.42 (0.91, 12.89)	5/9	162/605	0.68
noue	2013	2	0	55	4		0.84 (0.01, 90.54)	2/2	55/59	0.11
/ezir	2013	3	2	36	55		2.29 (0.36, 14.40)	3/5	36/91	0.48
Brown	2013	2	0	27	286		115.74 (1.17, 11449.72)	2/2	27/313	0.01
Rohacek	2014	21	4	495	12	!	0.13 (0.04, 0.43)	21/25	495/507	2.38
Dya	2014	5	2	98	5		0.13 (0.02, 0.83)	5/7	98/103	1.14
Nichelson Hosp	2015	300	124	3651	1128	-	0.75 (0.60, 0.93)	300/424	365/4779	55.66
Michelson Disc	2015	86	36	3287	1643		1.19 (0.81, 1.77)	86/122	3287/4930	14.98
Grunau	2015	15	7	333	118		0.76 (0.30, 1.91)	15/22	333/451	3.15
Algurashi	2015	43	28	209	204		1.50 (0.90, 2.51)	43/71	209/413	7.73
Manuyakorn	2015	14	1	142	15		1.48 (0.18, 12.05)	14/15	142/157	0.53
Fricharoen	2015	9	1	37	0 —		0.04 (0.00, 4.95)	9/10	37/37	0.60
Guiot	2017	2	5	164	99	<u>_</u>	0.24 (0.05, 1.27)	2/7	164/263	1.94
ee	2017	35	1	746	90		4.22 (0.57, 31.19)	35/36	746/836	0.55
M-H Overall (I-square	d = 68.2%	, P = 0.000)				4	0.92 (0.78, 1.07)	616/871	10270/14762	100.00
D+L Overall						é i	0.87 (0.74, 1.02)			
						2 1 10	-			
							oids used more among biphasic			

C Anti H2		Bip	hasic	Unij	phasic				Weight
Author	Year	H2	No H2	H2	No H2			OR (95% CI)	(I-V)
Ellis	2007	4	16	25	58		-	0.58 (0.18, 1.91)	11.89
Lertnawapan	2011	9	4	114	81			1.60 (0.48, 5.37)	11.50
Smit	2015	0	15	4	263			0.82 (0.01, 75.38)	0.83
Оуа	2014	7	0	87	16			6.69 (0.08, 586.94)	0.84
Stark	1996	7	5	8	5			0.88 (0.18, 4.34)	6.58
Guiot	2017	2	5	100	163		-	0.65 (0.12, 3.42)	6.14
Alqurashi	2015	14	57	67	346		-	1.27 (0.67, 2.41)	41.17
Manuyakorn	2015	10	5	76	81			2.13 (0.70, 6.52)	13.51
Ko	2015	7	2	273	133			1.71 (0.35, 8.32)	6.72
Douglas	1994	0	4	9	46			0.24 (0.00, 22.43)	0.82
I-V Overall (I-squar	ed = 0.0%, P =	0.751)					•	1.21 (0.80, 1.83)	100.00
D+L Overall							•	1.21 (0.80, 1.83)	
						2 1	100		
						H2 used more frequently among uniphasic	H2 used more frequently among biphasic		

Supplemental Therapies to Prevent Anaphylaxis

Question 2

<u>Recommendation</u>: The guideline suggests against glucocorticoids or antihistamines as an intervention to prevent biphasic anaphylaxis

Conditional Recommendations; Very Low Certainty Evidence

Shaker M, Wallace D, Golden D, et al. Anaphylaxis – A 2020 Practice Parameter Update, Systematic Review, and GRADE Analysis. JACI 2020

American Academy of Allergy Asthma & Immunology

Coming Attractions

2023 Anaphylaxis Parameter

Key Messages

Despite slight variations in details, anaphylaxis criteria are more alike than different

New understanding of the pathophysiology of mast cell release is informing our approach to anaphylaxis risk

History is key when evaluating both HaT and the alpha gal syndrome; some cases of anaphylaxis remain idiopathic

Epinephrine is the first line pharmacotherapy for uniphasic and biphasic anaphylaxis

Severe anaphylaxis and multiple epinephrine doses increase biphasic risk

Using antihistamines and/or glucocorticoids to prevent anaphylaxis is a low value practice, in general

Key Messages

74th PAAA Annual Meeting

JUNE 23-25, 2023 The Hotel Hershey, Hershey, PA

Food Protein-Induced Enterocolitis: How common is it?

Presented by: Jonathan Spergel, MD, PhD

> Friday, June 23, 2023 10:45 a.m. – 11:30 a.m.

FPIES: How Common is it? What Foods are involved?

Jonathan M. Spergel, MD, PhD

The Children's Hospital of Philadelphia Perelman School of Medicine at Univ. of Pennsylvania

Disclosures

Jonathan M. Spergel, MD, PhD

Grants: NIH, FARE, Regeneron/Sanofi, Bristol-Myers-Squib Consultant: Regeneron/Sanofi, Readysetfood, Novartis, DSMB: Alladapt, NIAID Royalities: Uptodate

None related to the talk

Children's Hospital of Philadelphia

FPIES

Definition by NIAID Guidelines

"FPIES is a non-IgE-mediated disorder that usually occurs in young infants. Symptoms include chronic vomiting, diarrhea, and failure to gain weight or height. When the allergenic food is removed from the infant's diet, symptoms disappear. Milk and soy protein are the most common causes, but some studies report reactions to rice, oat, or other cereal grains. A similar condition also has been reported in adults, most often related to eating crustacean shellfish."

Boyce et al. J Allergy Clin Immunol. 2010; 126:S1-58

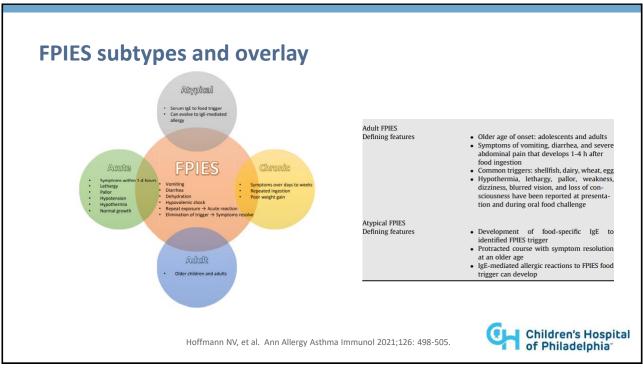
Early Reported Cases-Powell

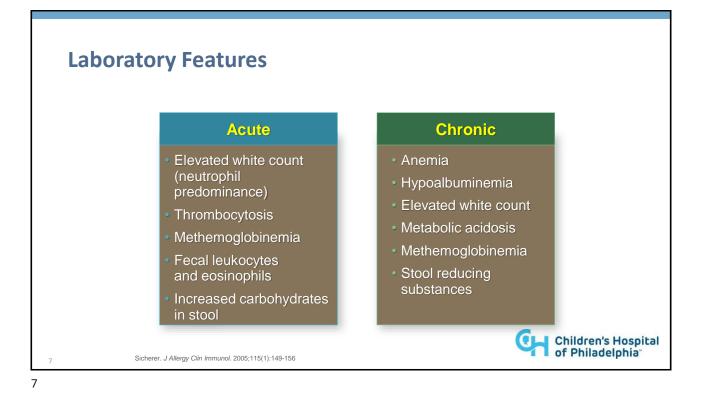
In 1978, 9 infants aged 4 to 27 days presented acutely ill and dehydrated (8/9)

• Reacted to milk and soy

Follow up oral challenges at 5 1/2 months

- 14/18 positive challenges
 - 10/14 had vomiting
 - 14/14 had diarrhea (blood, WBC, eosinophils, carbohydrate in stool)
 - PMN rise peaked at 6 hours




Powell, J Pediatrics 1978; 93: 553-560

Diagnosis

- Clinical Diagnosis
- Skin Testing or Specific IgE Negative >90%
- Biopsy are not routine

Epidemiology

- Unclear due to misdiagnosis or underdiagnosis
- Spain: 0.79%
- Israel: 0.34%
- Australia: 0.16%
- Japan 1%
- United States
 - Birth Cohort
 - Massachusetts 1%
 - EMR Cohort: 0.14%

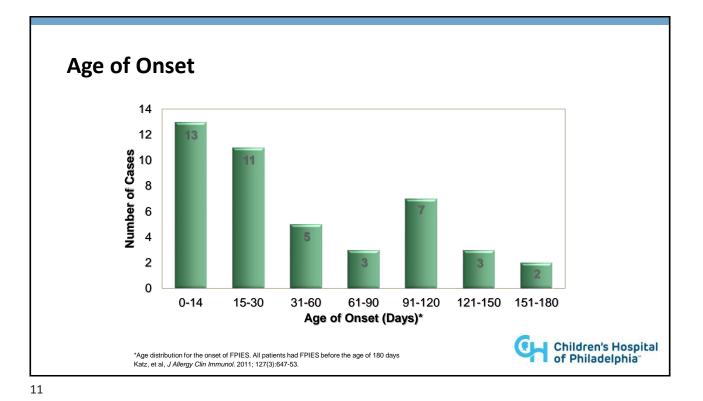
Katz et al, J Allergy Clin Immunol. 2011; 127(3):647-53.; Mehr et al, Pediatrics 2009;123:e459-464. Su et al, Allegy 2023; Prattico et al. Int. Arch Of Allergy Immunol 2023

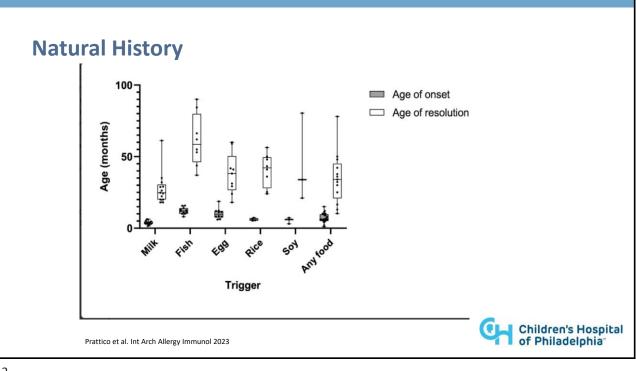
Differential Diagnosis • Acute • IgE mediated reaction Food Poisoning Acute Abdomen Sepsis • Chronic or multiple foods Severe GERD • IBD Metabolic disease • Carbohydrate deficiency Anatomical Issues • Tethered cord Malrotation Children's Hospital of Philadelphia 9

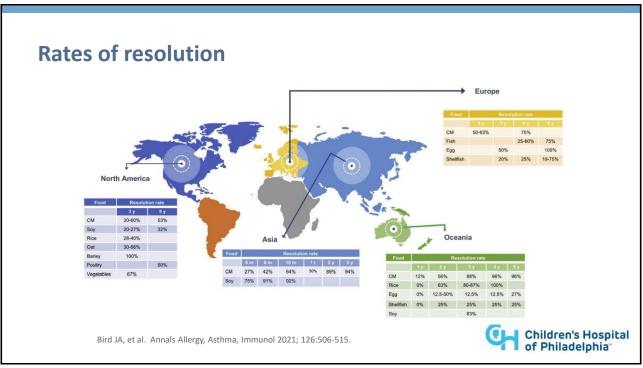
Associated Atopic Conditions

	_		
- 4	7	4	

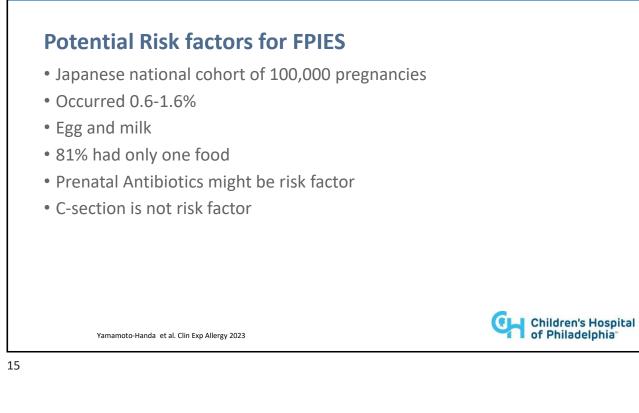
A. Cianferoni / Ann Allergy Asthma Immunol 126 (2021) 469–477


Table 2

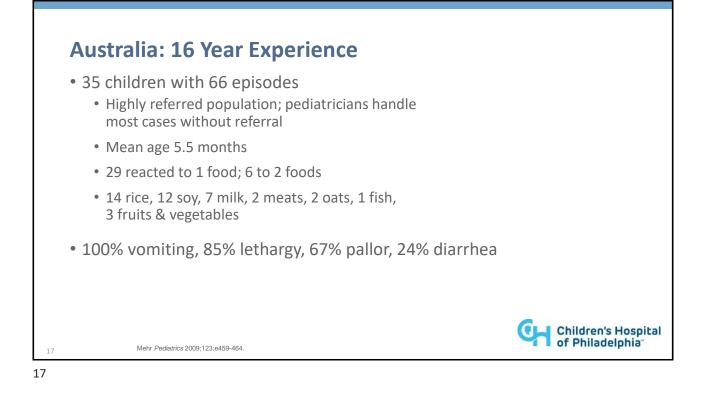

Atopic Comorbidities in Patients With Food Protein-Induced Enterocolitis Syndrome

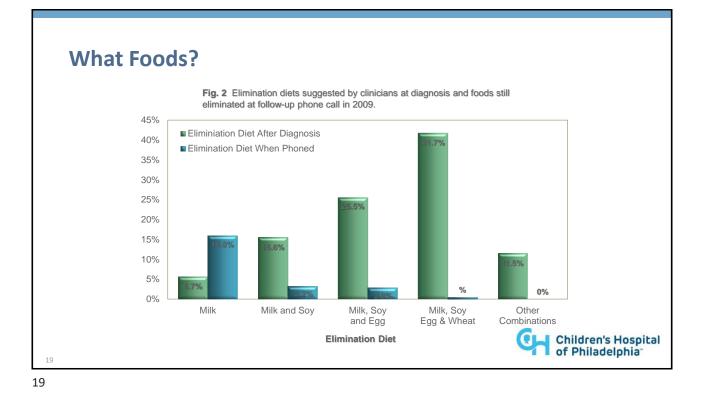

Country	IgE-mediated food allergy (%)	Atopic dermatitis (%)	Allergic rhinitis (%)	Asthma (%)
Australia ²⁵	16	42	3	3
Italy ^{17,44}	10	9-19	NA	NA
Israel ²¹	18	NA	NA	NA
Korea ⁴⁰	0	NA	NA	NA
Spain ^{26,34}	2.3-15.7	NA	NA	NA
US children ³³	65	9.2	32.6	25.2
US adults ³³	42.5	22.3	31.1	37.4
Philadelphia, Pennsylvania, United States ^{15,27}	19-23.8	20.6-34	28	17-26.6
New York City, New York, United States ²³	39	57	38	25
Houston, Texas, United States ³⁸	5	46	19	7

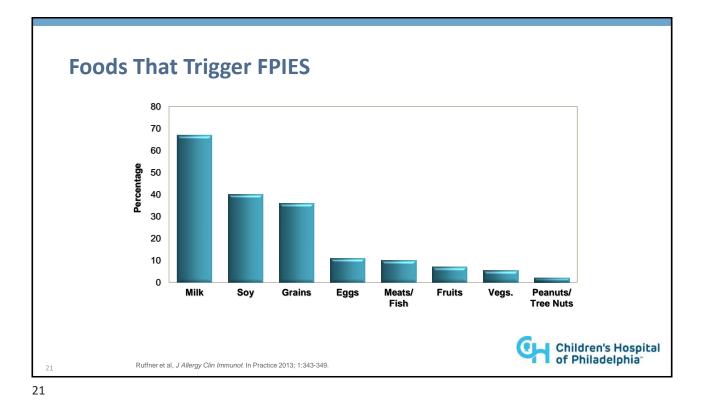
Abbreviations: IgE, immunoglobulin E; NA, not available.

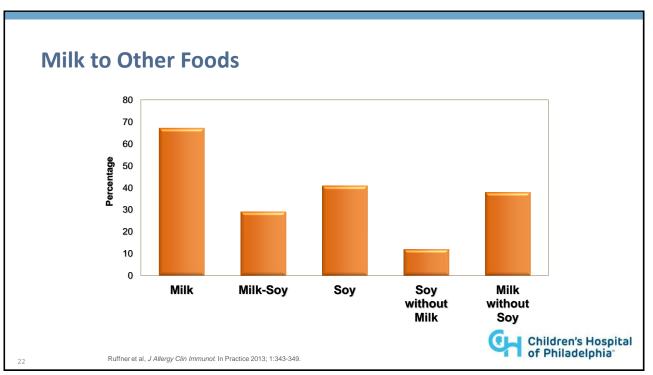


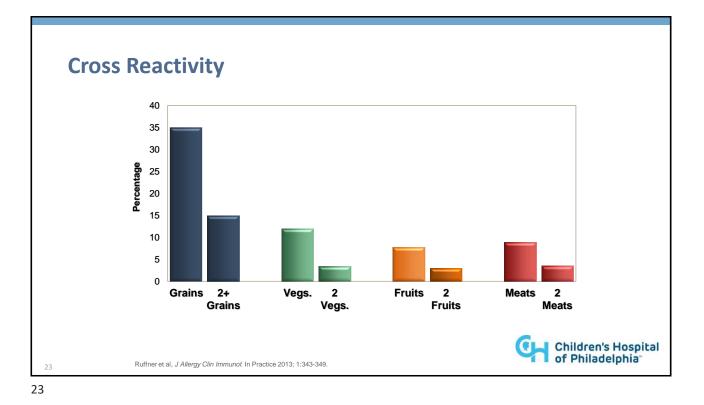
Adult Onset FPIES

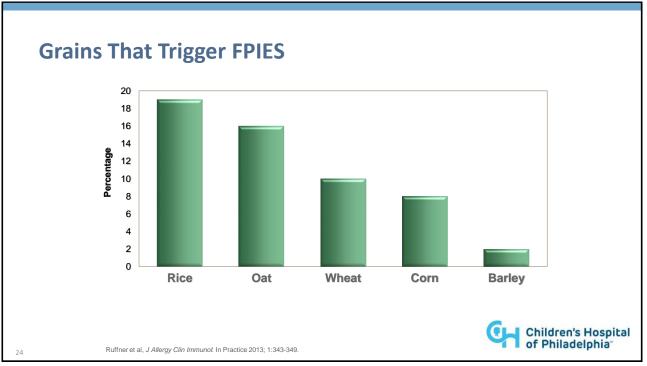

- Age on onset: 40's
- Symptoms: abdominal pain, diarrhea (more than vomiting)
- Neutrophilic shift on challenge
- Shellfish and fish
 - Some reports to milk and egg
- 20-40% developed tolerance in 18 months

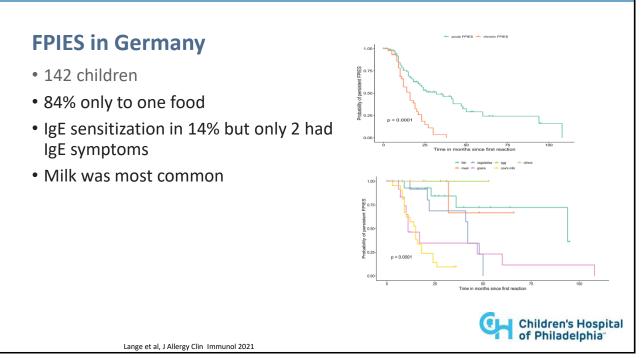

Graham and Coubet J Allergy Clin Immunol In Practice 2022

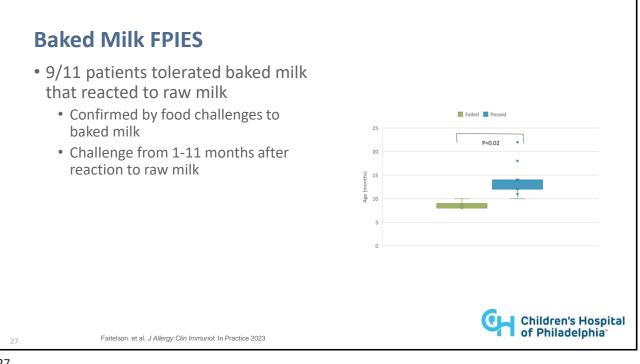


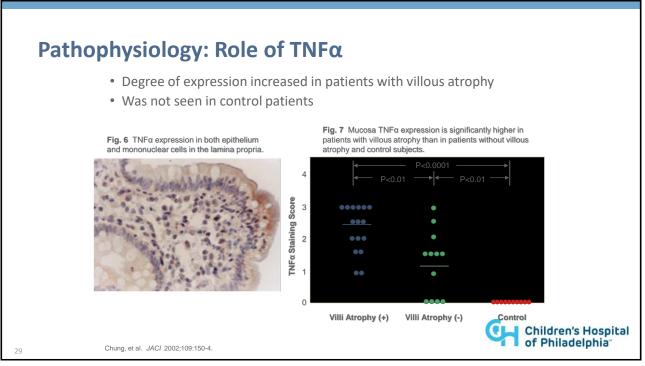




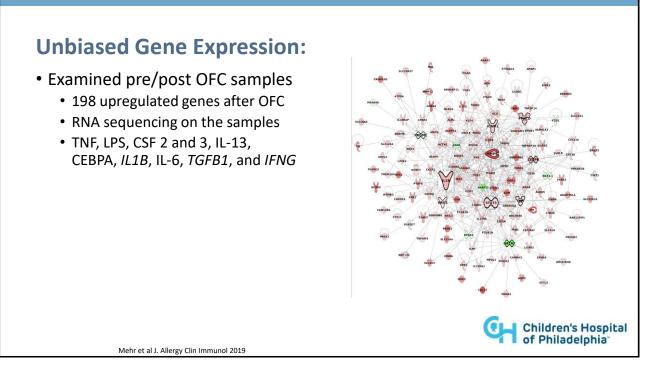


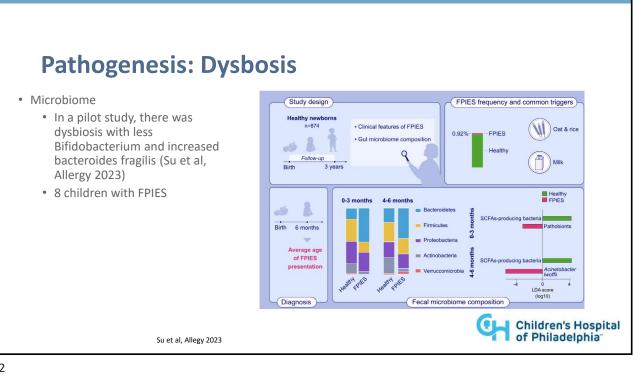

CHOP Experien	ce		
N=380			
	Milk	38%	
	Soy	24%	
	Rice	9%	
	Oat	8%	
	Wheat	7%	
	• Average 2.55 I	Foods	
	 No gender or predisposition 		
20 Ruffner et al, J Allergy Clin In	nmunol: In Practice 2013; 1:343-349.		Children's Hospital of Philadelphia



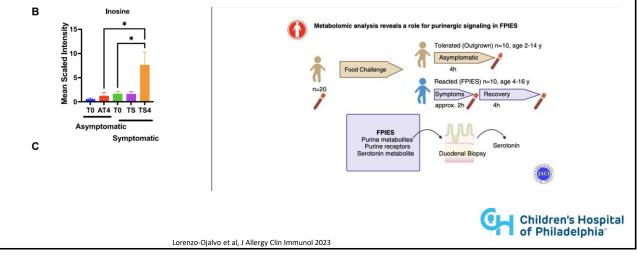

Most Commons Foods Worldwide

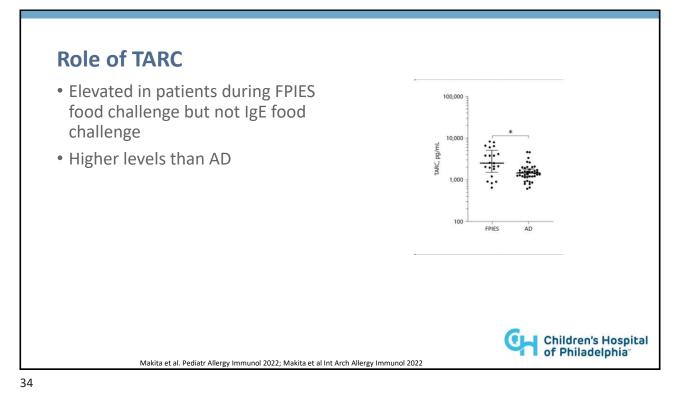
ustralia	Rice (45.0)	CM (31.5)	Egg (12.0)	
hile	CM (58.1)	Vegetables ^a (37.1)	Rice (22.6)	
rance	CM (45.5)	Fish (17.0)	Egg (13.5)	
Germany	CM (28.0)	Fish (27/0)	Vegetables ^b (24.0)	
Freece	Fish (44.4)	CM (40.4)	Egg (6.0)	
aly	CM (38.8)	Fish (10.7)	Egg (6.0)	
apan	Egg (42.0)	CM (23.0)	Soy (11.0)	
pain	Fish (39.3)	CM (35.9)	Egg (10.3)	
weden	CM (26.0)	Fish (25.0)	Oat (22.0)	
ast Mediterranean	CM (47.8)	Egg (36.0)	Fish (26.9)	
JK	CM (35.0)	Fish (14.5)	Egg (14.5)	
JSA	CM (39.1)	Grains (28.4)	Soy (24.9)	
	s potato, pumpkir	to, zucchini, chard, spinacl 1, carrot, sweet potato, een bean.		


Mucosal Finding

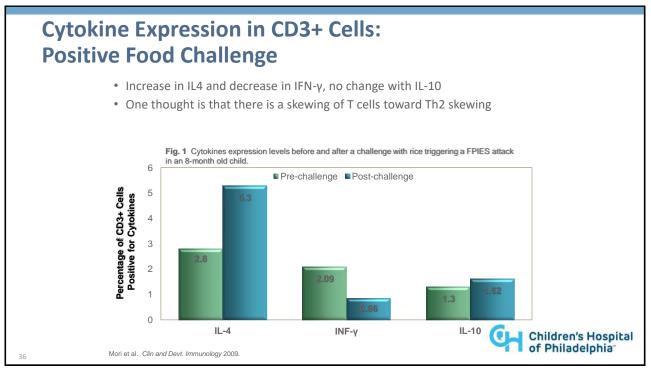

- From mucosal biopsy:
 - 个TNF-a
 - \downarrow TGF-b receptor
- From serum:
 - 1L-10
 - 个 IP-10 (CXCL-10)
 - \checkmark Latent TGF-b produced by PBMCs in response to food protein

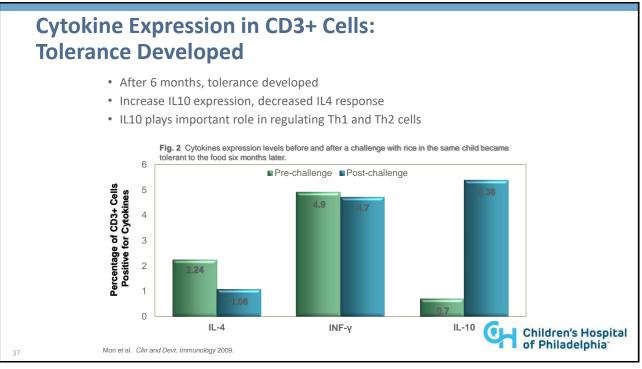
- Colonoscopic findings:
 - Decreased vascularity, friability, ulceration
- Upper endoscopic findings:
 - Gastric edema, erythema and mucosal friability and erosion among vomiting and failure tothrive infants

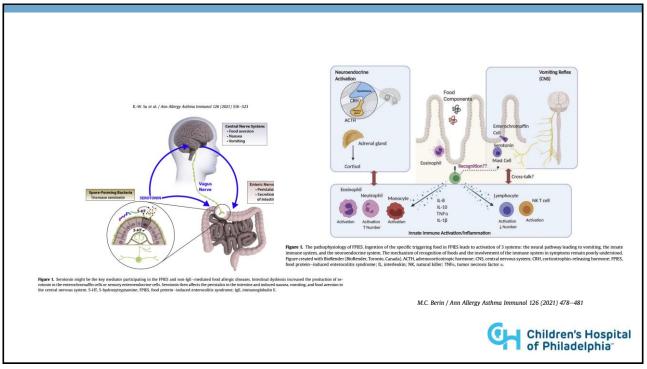

Su et al. Ann Allergy Immunol 2021

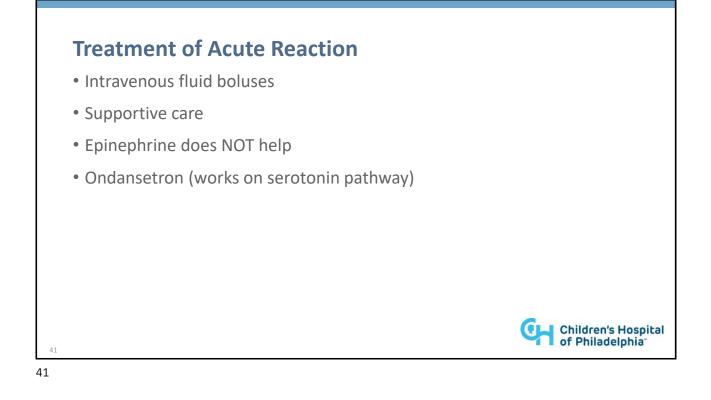


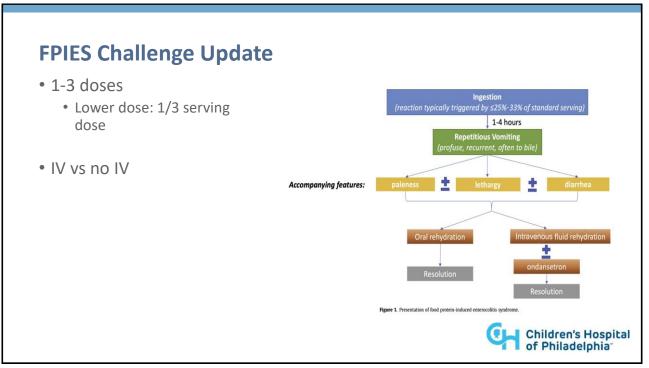

Pathogenesis


• Increase in Serotonin and adenosine






Treatment of Acute Reaction


Ondanestron

- John Hopkins
 - 5 consecutive patients responded with 10-30 minutes after medications
 - Patients reacted 2 hours after ingestion
 - All had IV fluids
 - Did not respond to oral
 - No control group

Holbrook et al, J Allergy Clin Immunol. 2013; 132(5):1219-1220.

Conclusion

- FPIES is a non-IgE mediated disease
- Presents in infancy in most cases
- Symptoms vomiting, hypotension
- Most common foods milk and soy
- Outgrown 3 yr (but can last into adulthood)

74th PAAA Annual Meeting

JUNE 23-25, 2023 The Hotel Hershey, Hershey, PA

Updates in Immunodeficiency

Presented by: Kelli Williams, MD, MPH

Friday, June 23, 2023 11:30 a.m. – 12:15 p.m.

Clinical Updates in Immunodeficiency

Kelli W. Williams, M.D., M.P.H. williamske@musc.edu

Changing What's Possible

Disclosures

- Advisory Board/Steering Committee Participant
 - Horizon Therapeutics, Pharming Healthcare, Enzyvant, Pfizer, Kenota Health
- Consultant for GSK (ended)
- Industry Sponsored Clinical Trial Investigator
 Regeneron (ended), GSK, and ADMA
- Off-label use of immunomodulators will be discussed
- Clinical recommendations are evidence-based and free of commercial bias

Changing What's Possible

Musc Children's Health

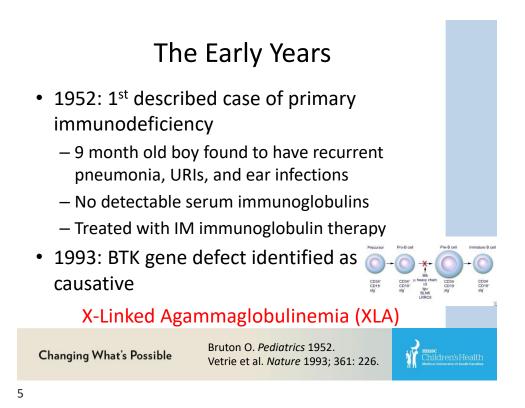
Learning Objectives

- To describe how the clinical presentation of immunodeficiency has evolved and expanded in the last 10 years
- To identify key clinical red flags concerning for possible inborn error of immunity (IEI)
- To discuss the importance of identifying a genetic cause and how this can impact medical management

Changing What's Possible

3

4

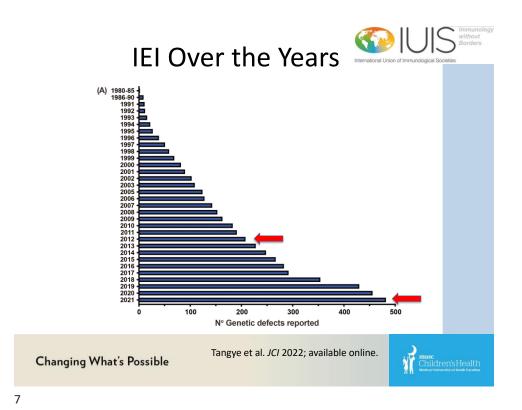

From PID to IEI?

- Inborn errors of immunity (IEI formerly called primary immunodeficiencies or PI, PID or PIDD) are a group of rare, inborn disorders of the immune system that result from:
 - Absent or reduced number of immune cells
 - Absent or reduced function of immune cells
- Increased risk for recurrent or severe infections
- Increased risk for autoimmunity, lymphoproliferation and hyperinflammation (e.g. PIRD)

Changing What's Possible

2

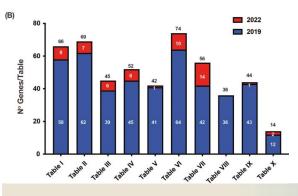
Children's Health



The Early Years

- 1971: "Bubble Boy" was born
- Prior brother died at age 7 months from severe infection, later found to have X-SCID
- Precautions taken early, lived in bubble 12 years until transplanted

Changing What's Possible The Story of David, IDF



Frequency & Distribution of IEIs

- Incidence: 1/700-1,000,000 (2:1, 라:우)
- Distribution

Changing What's Possible

Tangye et al. JCI 2022

I. Combined/T-B deficiencies II. CID + syndromic features III. Predominantly antibody IV. Immune dysregulation V. Phagocytic defects VI. Intrinsic or Innate VII. Autoinflammatory disorders VIII. Complement deficiency IX. Bone marrow failure X. Phenocopies of PID

Case 1

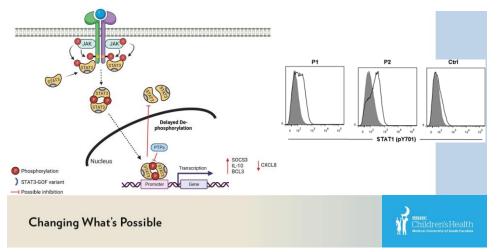
- 7 year old African American female with recurrent "oral ulcers"
 - Seen in dental clinic for ulcers, which were swabbed and + C. albicans
 - By age 9 she was seen by ID and GI for recurrent oral and esophageal candidiasis
 - Responsive to fluconazole, but recurrences q3 months for the last 2 years
 - EGD showed gastritis, esophagitis with ulcerations and candidiasis

Musc Children's Health

Changing What's Possible

Case 1

- History of recurrent & difficult to treat thrush in infancy
- History of chronic ear infections starting at age 6 months, 2 sets of tubes
- History of recurrent and prolonged URIs, 10 day hospitalization for RSV at age 18 months
- History of Hashimoto's thyroiditis since age 4
- 1 CXR proven pneumonia
- 2 year history of diffuse flat warts


Musc Children's Health

Changing What's Possible

Gain-of-function human *STAT1* mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis

11

Clinical Phenotype in STAT1 GOF

- Chronic mucocutaneous candidiasis
- Disseminated Coccidioidomycosis or Histoplasmosis
- Recurrent sinopulmonary infections
- Systemic or atypical viral infections

 HSV, VZV, then CMV, EBV, HPV, molluscum
- Significant autoimmunity starting in childhood — Thyroid, T1DM, cytopenias, vitiligo, alopecia, SLE
- Cerebral aneurysms

Vinh et al. Blood 2010; 115: 1519.

Musc Children's Health

Changing What's Possible

Case 2

- HPI: 20 year old female presented to PCP clinic with flare of her psoriasis and is noted to have moderate cervical lymphadenopathy
 - ITP diagnosed at age 4 after presenting with petechiae and large hematoma after a fall
 - Ongoing recurrences of ITP despite IVIG, Rho(D), IVIG + steroids
 - Bone marrow evaluation not concerning for malignancy
 - Diagnosed with autoimmune hemolytic anemia, intermittent neutropenia, and T cell lymphopenia at age 8
 - Found to have IgA deficiency at age 9
 - Developed chronic abdominal pain and bloody diarrhea at age 10, diagnosed as IBS
 - Diagnosed with psoriasis at age 14

Changing What's Possible

13

Case 2

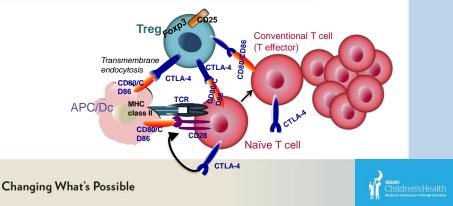
- Immune evaluation identified low IgG, low IgA, normal IgM, CD4 lymphopenia, inverted CD4/CD8 ratio, decreased class switched memory B cells
- ALPS flow not suggestive
- Colon biopsies showed colitis, crypt apoptosis, absence of goblet cells
- Bone marrow repeated and no evidence of malignancy
- Cytogenetics reassuring
- Bone Marrow Failure gene panel negative

Changing What's Possible

Musc Children's Health

Case 2

- Pertinent family history
 - Father has lung and GI lymphocytic, CVID, splenomegaly, and cytopenias
 - Two older sisters with autoimmune thyroiditis
 - One sister with chronic sinusitis
 - Younger brother with recurrent ear infections s/p tube placement and chronic diarrhea (diagnosed as celiac disease based on pathology)


Changing What's Possible

15

IMMUNODEFICIENCY

Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4

Hye Sun Kuehn, ¹⁶ W eiming Ouyang,²⁶ Bernice Lo,^{3,46} Elissa K. Deenick, ^{5,6} Julie E. Niemela, ¹ Danielle T. Avery, ⁶ Jean-Nicolas Schickel, ⁷ Dat Q. Tran,⁶ Jennifer Stoddard, ¹ Yu Zhang,^{4,9} David M. Frucht,² Bogdan Dumitriu,¹⁰ Phillip Scheinberg,¹⁰ Les R. Folo, ¹¹ Cathieen A. Frein,¹⁰ Susan Price,³⁴ Onristopher Koh, ¹⁰ Theo Heller, ¹⁰ Christine M. Seroogy, ⁴⁴ Anna Huttenlocher,^{44,4} V. Koneti Rao,³⁴ H elen C. Su, ^{4,9} David Kleiner, ¹⁰ Luigi D. Notarangelo, ¹⁷ Yajesh Rampertaap,¹⁰ Kenneth N. Olivier, ¹⁰ Joshua M CElwee,¹⁰ Jason Hughes, ¹⁰ Stefania Pittaluga,¹⁶ Joao B. Oliveira,²⁰ Eric Meffre, ⁷ Thomas A. Fleisher, ¹ Steven M. Holland,^{4,10} Michael J. Lenardo,^{3,4}†

Science

AAAS

Heterozygous Germline Mutations in *CTLA-4* Cause Autoimmunity, Immune Dysregulation and Lymphoproliferation by Haploinsufficiency

- Brain and pulmonary lymphocytic infiltrates and/or nodules
- GI enteropathy
- Hepatosplenomegaly
- Lymphadenopathy
- Recurrent sinopulmonary infections
- Recurrent C. diff infection
- Susceptibility to viral infections, EBV, warts

Changing What's Possible Schubert et al. Nature Medicine 2014; 20: 1410. Schwab et al. JACI 2018; 142: 1932.

17

Case 3

 HPI: 19 yo girl presented with refractory ear eczema, chronic otitis externa and poor wound healing

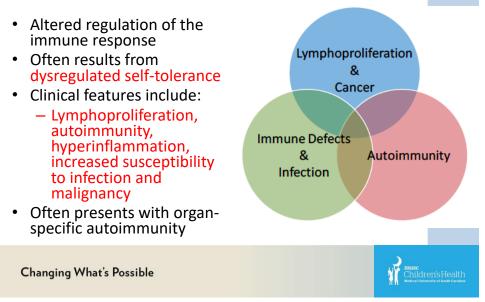
Case 3

• Other pertinent medical history

- Diagnosed as CGD carrier at age 13
 - Missense mutation of C→T in exon 9 of the CYBB gene (T362I)
- Recurrent skin abscesses & lymphadenitis starting at age 15
- Eczema started at age 15
 - Patch test + nickel
 - Treated with topical steroids, prednisone and countless antibiotics
 - Treated with dupilumab
- Open breast wounds by age 15

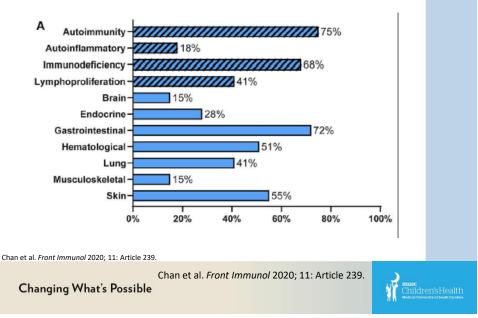
 Treated with prednisone and adalimumab
- Chronic otitis externa started at age 18

Changing What's Possible

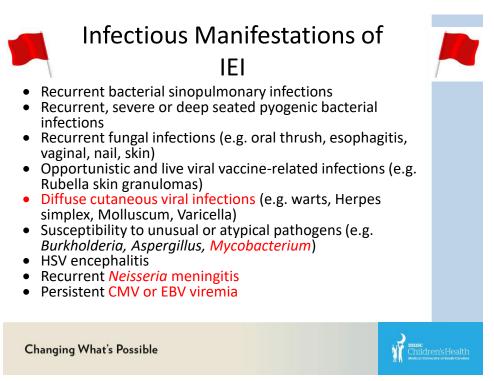

19

What is a PIRD?

- Primary immune regulatory disorders (PIRD) are a group of rare, inborn disorders of the immune system that result in manifestations of immune-mediated pathology, namely:
 - Affecting initiation of inflammation (e.g. inflammasomopathies)
 - Control of self-reactivity (e.g. IPEX, CTLA4, LRBA)
 - Strength of immune activation (e.g. HLH)


Children's Health

Clinical Manifestations of Immune Dysregulation


21

Organ Specific Autoimmunity in PIRD

	PIDD	PIRD
Age of Onset	Bimodal (young children, late adulthood)	Early (first condition commonly diagnosed by age 2)
Primary Clinical Manifestations	-Infections (recurrent, severe, opportunistic) -May develop autoimmunity with time	-Autoimmunity (multiple disorders, early) -Autoinflammation -Benign lymphadenopathy (marked, diffuse) -May have infections but not a prominent feature
Main Treatments	-Antimicrobials -Immunoglobulin replacement -Chronic immunosuppression (e.g. steroids, targeted biologics) -HSCT or Gene Therapy	-Immunomodulation and/or immunosuppression (e.g. steroids, targeted biologics) -HSCT or Gene Therapy
Changing What's	Possible	musc Chaidd

Changing What's Possible

Non-Infectious Manifestations of IEI Autoimmunity (e.g. early onset, cytopenias, multiple forms of organ-specific autoimmunity) Autoinflammation (e.g. recurrent fevers +/- rashes, arthralgias, abdominal pain, oral ulcers)

- Lymphoproliferation (e.g. lymphadenopathy, hepatomegaly, splenomegaly)
- Inflammatory bowel disease (e.g. early onset, treatment refractory)
- Interstitial lung disease or non-CF related bronchiectasis
- Severe or refractory atopic dermatitis (+/- markedly elevated IgE, hypereosinophilia)
- Failure to thrive
- Malignancy (e.g. leukemia, lymphomas)

Changing What's Possible

25

Laboratory Evaluation of PIDD

defect agamma Combine Deficien	e IgA Deficiency, X-linked aglobulinemia, ed Variable Immune cy	-CBC, serum immunoglobulins and lymphocyte flow cytometry -Vaccine titers (S. pneumo,
	•	tetanus, diphtheria
-	e Syndrome, Wiskott- Syndrome	-CBC and lymphocyte flow cytometry → LOOK AT ALC -Antigen & mitogen proliferation
	combined odeficiency, Ataxia- ectasia	-Send all of the above (humoral and cellular defects) **NOW TREC ON NBS**
• •	granulomatous disease, te Adhesion Deficiency	-CBC → LOOK AT WBC, ANC -Flow cytometry (DHR, CD18/CD11b)
Complement C1q/r/s, deficiency	. C2-C9 deficiency	-CH50 -AH50, Factor H,B,I,D, Properdin

Changing What's Possible

Laboratory Findings in PIRD							
Category	Examples	Common Lab Findings					
PIRD	STAT3 GOF, LRBA, CTLA4, APDS, ITCH deficiency, BACH2	-Low or Normal IgG -Occasionally elevated IgM -Occasionally elevated IgE -Impaired specific antibody production (vaccine response) -Lymphocytes usually normal -Decreased class switched memory B cells -Inverted CD4/CD8 -Increased T cell activation markers (HLA-DR, CD38, CD69) -Elevated sIL2R -Varying Treg numbers & function					
Changin	g What's Possible	Manual Market					

Genomic Concepts in Immunity

- ~10-12% of human coding genes are involved in the immune system
- That translates into ~2400 genes linked to immune function
 - Adaptive immunity involves ~700 genes
 - Innate immunity involves ~1700 genes
- To date, there are now >500 monogenetic diseases of the immune system
 - Most pathogenic variants cause loss of function
 - Now several genes with either loss or gain of function
 - Growing list of digenic diseases

Changing What's Possible

Why Reach a Genetic Diagnosis?

- Establishes a definitive diagnosis
- Provides a prediction of disease severity
- Identifies patients at higher risk for malignancy and thus closer surveillance
- Provides opportunity to screen for others at risk patients and provide family counseling
- Increases understanding of a specific disorder and genetic mechanisms involved
- Can identify new potential therapeutic targets
- Can improve survival and outcomes

Changing What's Possible

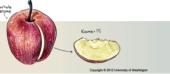
29

Beyond One Gene: NGS

- Next generation sequencing (NGS)
 - Targeted panel of genes
 - High throughput
 - Lower cost than sanger sequencing
 - Nonbiased evaluation
 - Cost effective

***Generally speaking, this is often first line for IEI genetic evaluations

Changing What's Possible



Beyond One Gene: WES, WGS

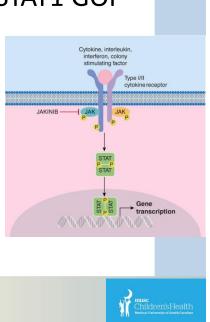
- Whole exome sequencing (WES)
 - Evaluates all and only exons
 - Intermediate to high coverage and depth
 - Estimated to pick up a<50% of disease causing mutations
 - Moderate cost
- Whole genome sequencing (WGS)
 - Evaluates all coding and noncoding base pairs
 - Low to intermediate coverage
 - High cost

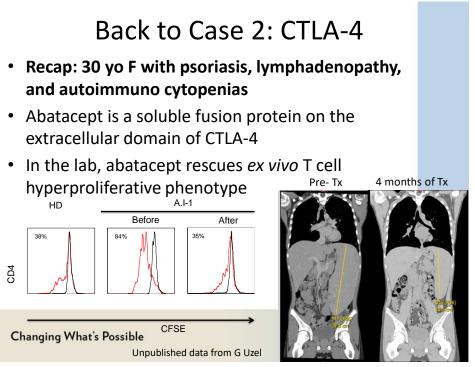
Changing What's Possible


```
31
```

Current Treatment Options

- TREAT and PREVENT INFECTIONS
- Humoral deficiency or dysfunction
 - Prophylactic antibiotics
 - Immunoglobulin replacement (IV, SC)
- Cellular deficiency or dysfunction
 - Prophylactic antibiotics
- Immune dysregulation
 - Immunomodulators or immunosuppressants
- When applicable, hematopoetic stem cell transplant or gene therapy

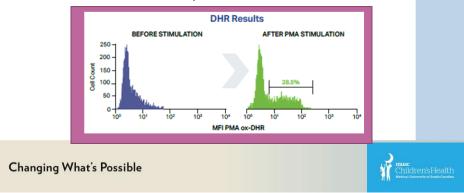

Changing What's Possible


Children's Health

Back to Case 1: STAT1 GOF

- Recap: 7 yo F with chronic mucocutaneous candidiasis (CMC), diffuse flat warts, oral ulcers, Hashimoto's thyroiditis
- Started on daily fluconazole with complete resolution of CMC
- Now on ruxolitinib with reduced warts, controlled autoimmunity

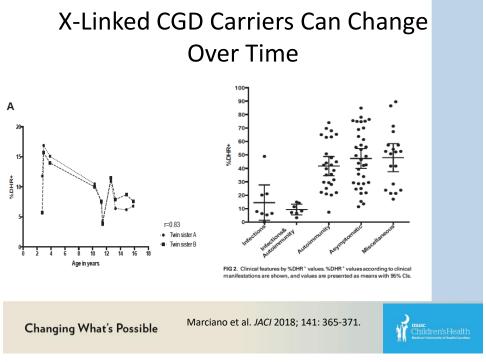
Changing What's Possible

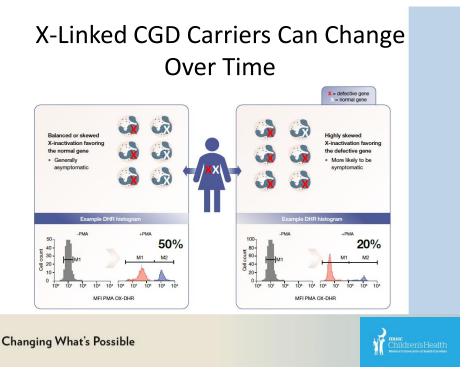


Back to Case 3: CGD

Recap: 19 yo F with poor wound healing, ear eczema, chronic otitis externa

- Skin biopsy showed deep non-necrotizing granulomatous inflammation
- DHR: 28.7% PMA ox-DHR; MFI 10.78



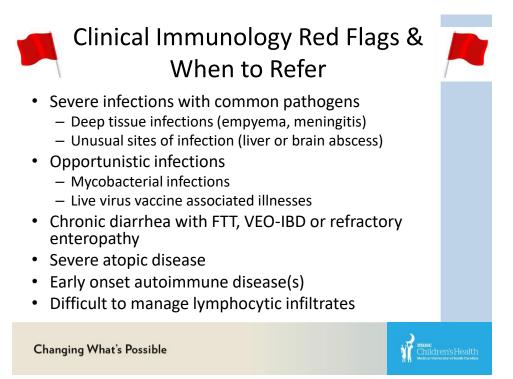

35

Back to Case 3: CGD

- Started on triple therapy with trimethoprimsulfamethoxazole, Itraconazole, and interferon gamma-1b
- Since starting this regimen, no abscesses, no lymphadenitis, chronic otitis externa, improved wound healing

Genetics Can Change Medical Management!

Changing What's Possible


TABLE 3 Example of genetically defined print			Genetics All	ow	
IPEX	FOXP3	Tacrolimus Cyclosporin Sirolimus	for our Prac	tice	
STAT1 GOF	STAT1	Ruxolitinib (JAK 1/2 inhibitor) Sirolimus	of Precisio	n	
STAT3 GOF	STAT3	Tocilizumab (IL-6 receptor blocker) Siltuximab (IL-6 blocker) Ruxolitinib (JAK 1/2 inhibitor)	Medicine	è	
LRBA deficiency	LRBA	Abatacept Sirolimus Hydroxychloroquine			
CTLA4 haploinsufficiency	CTLA4	Sirolimus Abatacept	A	Ro	
APDS	PIK3CD PIK3R1	Sirolimus Leniolisib (PI3K inhibitor)		0	
XIAP and NLRC4	BIRC4 NLRC4	IL-18 binding protein			
Primary HLH	PRF, UNC13 D STX11, STXBP2	Emapalumab (IFN-γ blocking antibody) Ruxolitinib (JAK 1/2 inhibitor)			
Changing V	Vhat's Poss		et al. <i>Pediat Blood Cancer</i> 2019.	musc Childr Medical Univ	en'sHealth erstry of South Carolina

-	immunodeficiency search	Algorithm Disease List Lab Resources
	нтиль	
	Overview	Disease List Lab Resources
Changin	g What's Possible https://www.immu	unodeficiencysearch.com/

SENTINEL ORGANISMS	RECURRENT INFECTIONS	CLINICAL FEATURES	AUTOIMMUNE	DISEASES WHICH MAY REQUIRE HSCT
Bacterial	Bacterial Sinopulmonary	Bone	Cytopenias	SCID
Viral	Bacterial Cellulitis/Abscess	Growth	Arthritis	XL Hyper IgM
Fungal	Bacterial Sepsis/Meningitis	Cutaneous Features	Vasculitis	Wiskott-Aldrich
Parasitic	Viral Respiratory	Facial Dysmorphology	Granulomas	IPEX
	Viral Cutaneous	Neurologic	SLE	XLP
	Fungal Mucocutaneous	Gastrointestinal	IBD	Primary HLH
	Recurrent Fever w/o Infection	Hematologic	HUS	Chediak-Higashi
		Endocrine	Sjogren	LAD I
		Allergic Disease	-7-8	CGD
		Pulmonary		IFN-Gamma R Defects

There's an App for That!

74th PAAA Annual Meeting

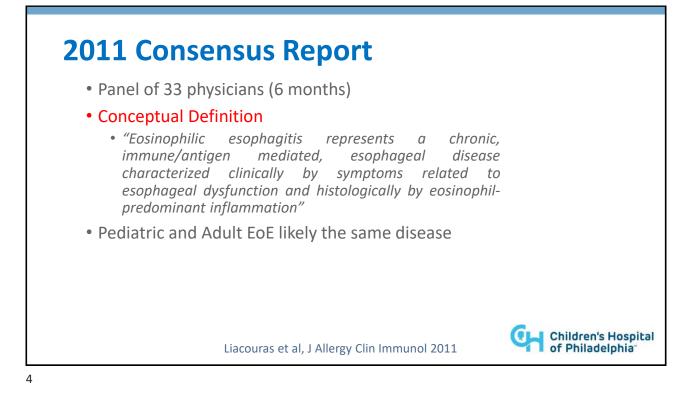
JUNE 23-25, 2023 The Hotel Hershey, Hershey, PA

Mayer A. Green Allergy Foundation Memorial Lecture: Eosinophilic Esophagitis: Update on Treatment and Diagnosis

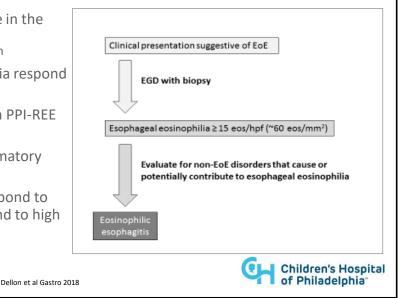
Presented by: Jonathan Spergel, MD, PhD

> Friday, June 23, 2023 12:15 p.m. – 1:00 p.m.

Learning Objectives


- Describe symptoms of Eosinophilic Esophagitis
- Review evidence-based treatments for Eosinophilic Esophagitis
- Identify monitoring of EoE patients

Disclosures


- Speaker: Medscape (WedMD)
- Grants: Sanofi, Regeneron, Novartis, Astra-Zeneca, Celegene/BMS, FARE, NIH
- Consultant: Regeneron/Sanofi, Ready Set Food, Novartis,
- Royalties: Uptodate

AGREE Conference: 3rd Revision for Diagnostic Criteria for EoE

- Nearly identical transcriptome in the biopsy
 - Difference in K+ channel protein
- 50% of esophageal eosinophilia respond to PPI
- 2 case reports of patients with PPI-REE also responding to diet
- High dose PPI has anti-inflammatory effects acting on Stat-6
- But, some patients do not respond to diet, swallowed CS and respond to high dose PPI

Symptoms of EoE

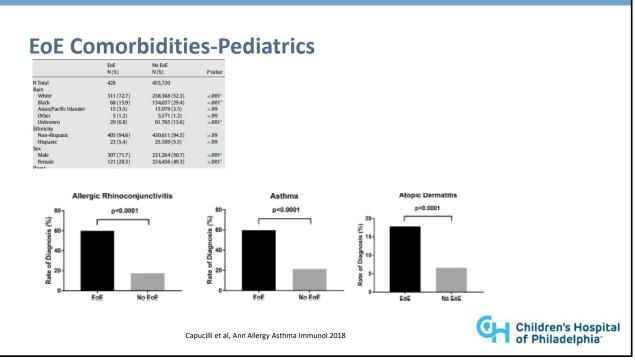
EOE Clinical Features

- Symptoms vary by age
- Symptoms may be intermittent
- Male> Female
- Untreated Disease may progress

to fibrosis

EoE patient	Common Symptoms
Infant	Food refusal, FTT, feeding intolerances/aversions, reflux
Children	Vomiting, dysphagia, abdominal pain, heartburn, regurgitation, feeding refusal/feeding aversions
Adult	Dysphagia, food impaction , heartburn, reflux

Furuta et al, *Gastroenterology* 2007 Spergel et al *J Pediatr Gastroenterol Nutr* 2009



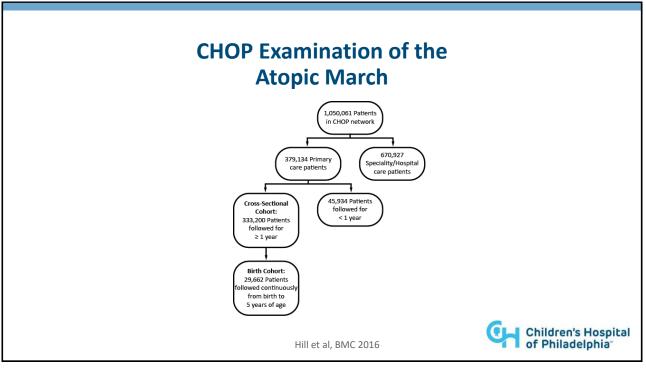
EoE and Other Atopic Disease

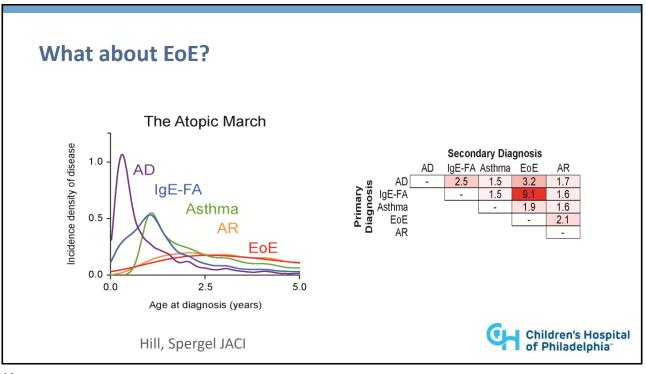
(what to do-Look for EoE in our atopic patients)

Children's Hospital of Philadelphia

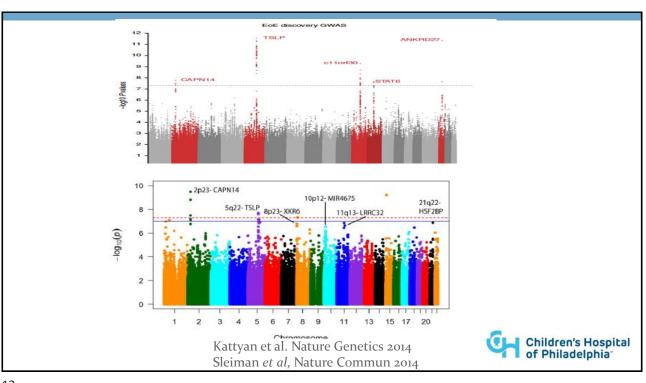
EoE related disease-Adult Cohort

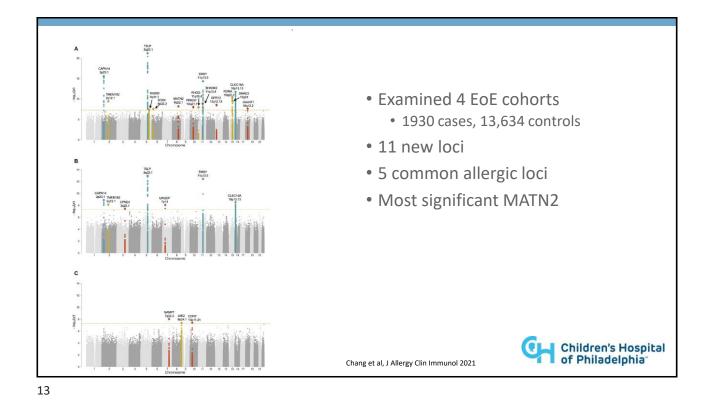
Characteristic	No. (%) of pati	ents (N = 950)
Sex		
Male	611 (64)	
Female	339 (36)	
Race		
African American	69(7)	
Asian	20(2)	
White	842 (89)	
Other or unknown	19(2)	
Ethnicity Hispanic	24(3)	
Non-Hispanic	24 (3) 926 (97)	
a 11 11 .	926 (97)	
Table 3		
Comorbid Conditions		
Condition	EoE cohort, % (N=950)	UPHS prevalence, 9 (N = 3,617,345)
Asthma	36	3.7
Allergic minitis	70	3.5
Atopic dermatitis	14	2.8
Food allergy	24	0.49
Pollen food allergy syndrome	34	0.07
Drug allergy	30	0.42
	3	0.1
Latex allergy	3	0.1
Anaphylaxis		
Autoimmune disease	9 ^a	4 ^a 8 ^a
Psychiatric disease	21 ^a	

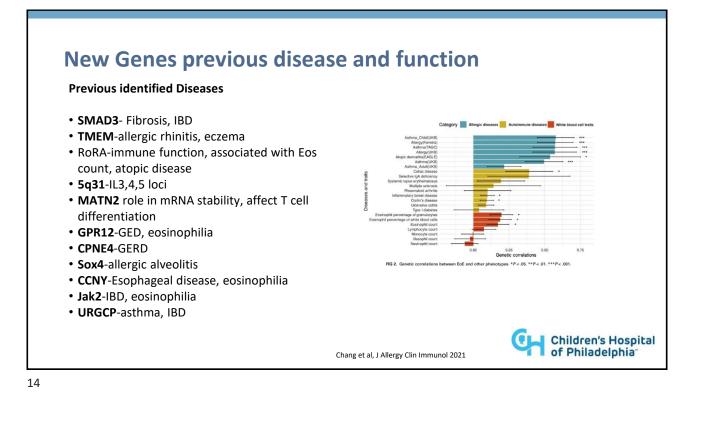

Comorbidity	EoE cohort, No. (%)(N = 950)	UPHS prevalence, No (%) (N = 3.617.345)
Celiac disease	19(2)	4.156 (0.11)
IBD	19(2)	21,096 (0.58)
Crohn disease	14 (1.47)	9,642 (0.27)
UC	5 (0.53)	11,454 (0.31)
Psoriasis	12 (1.26)	20,708 (0.57)
AI thyroiditis	10 (1.05)	8,880 (0.25)
SLE	10 (1.05)	14,530 (0.40)
Vitiligo	5 (0.53)	9,954 (0.28)
Type 1 diabetes	3 (0.32)	18,573 (0.51)
Graves disease	2 (0.21)	16,542 (0.46)
Dermatomyositis	2 (0.21)	1,245 (0.03)
Scleroderma	2 (0.21)	1,366 (0.04)

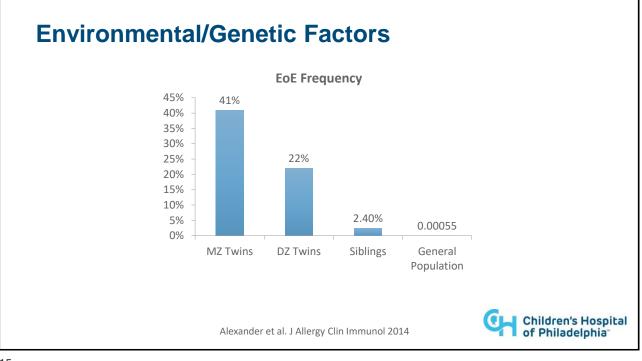

Abbreviations: EoE, eosinophilic esophagitis; UPHS, University of Pennsylvania Health Systems. *Total of each type or subtypes listed in Table 4 and Table 5.

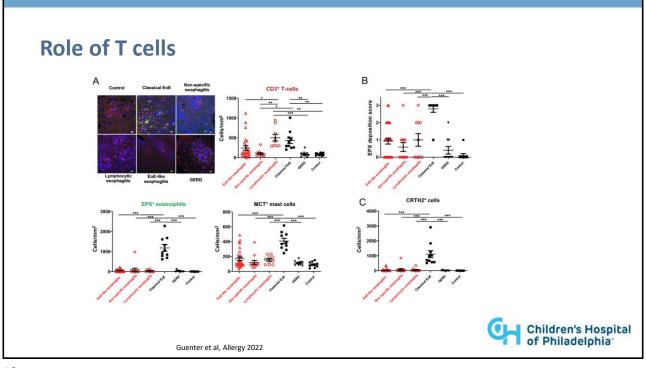
Abbreviations: Al, autoinninune, EOE, eosmophin	c esophagius, ibb, innaminatory
bowel disease; SLE, systemic lupus erythematosus; U	JC, ulcerative colitis; UPHS, Univer-
sity of Pennsylvania Health Systems.	

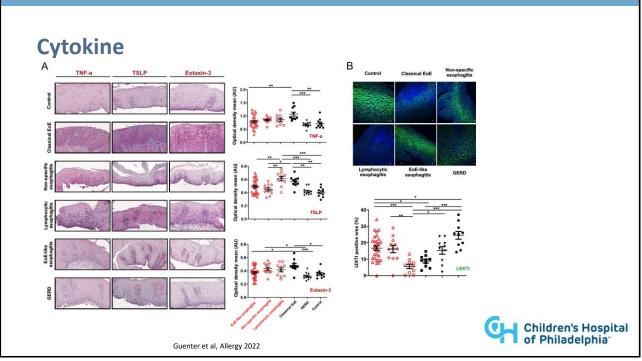




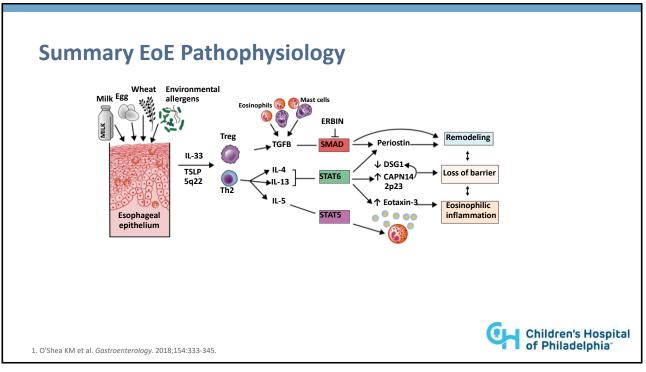


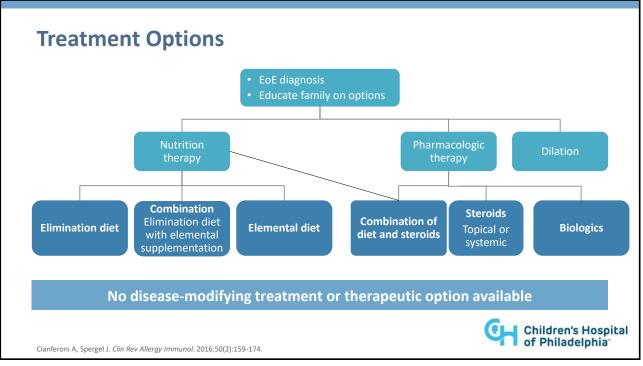


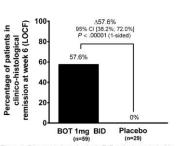








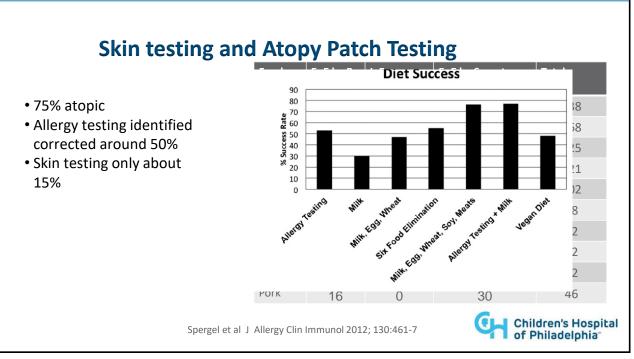


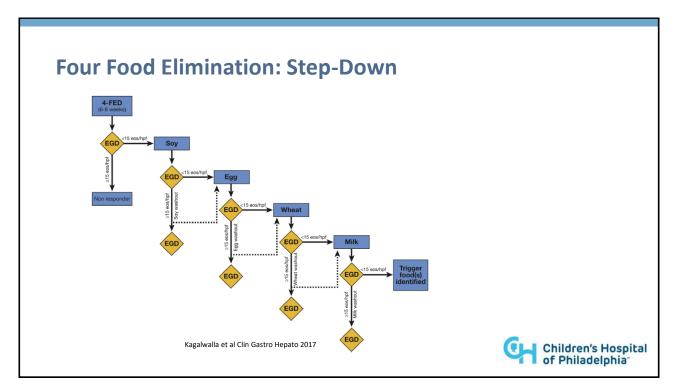


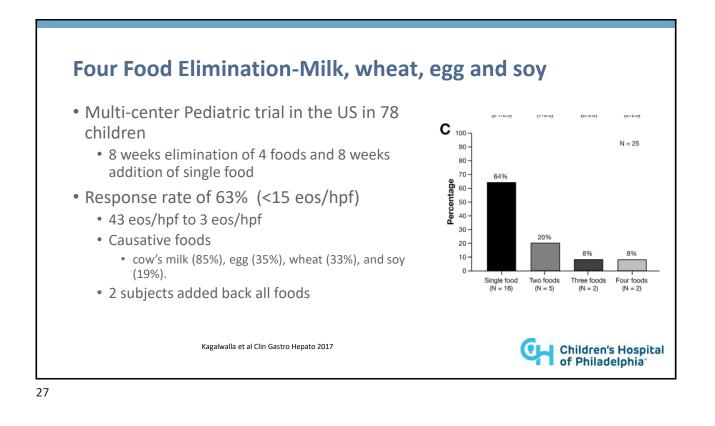
Budesonide Orodispensible tablets

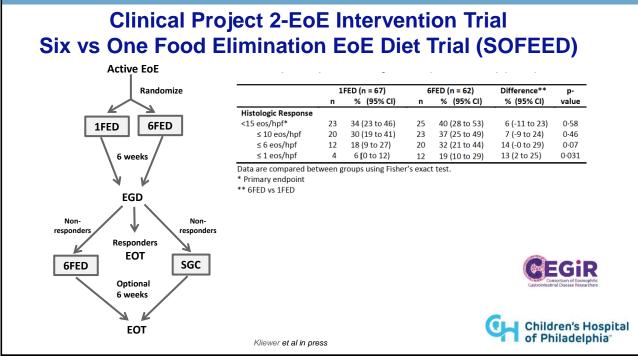
- Approved in EU in 2018
- 1st trial
 - 88 adults

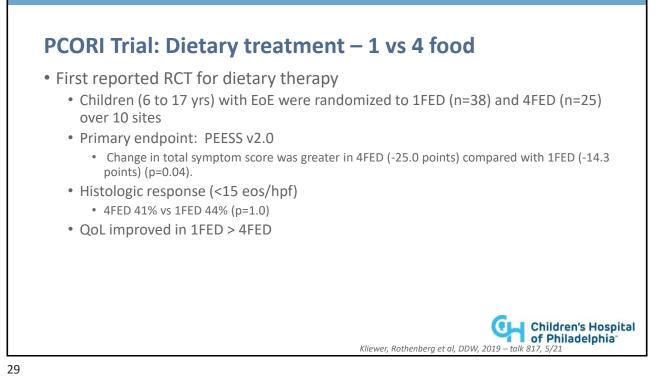
Any TEAE	37 (62.7)	12 (41.1)
Severe TEAE	0 (0)	1 (3.4)
Esophageal food impaction	0 (0)	1 (3.4)
TEAE related to study drug	23 (39.0)	1 (3.4)
Serious AEs	0 (0)	0 (0)
TEAE leading to withdrawal from the study	0 (0)	1 (3.4)
Esophageal food impaction of severe intensity requiring endoscopic intervention	0 (0)	1 (3.4)
TEAEs by occurring in ≥2 patients in any treatment group		
Gastrointestinal disorders	10 (16.9)	3 (10.3
Gastroesophageal reflux disease	3 (5.1)	0 (0)
Nausea	2 (3.4)	0 (0)
Infections and infestations	21 (35.6)	6 (20.7
Suspected local fungal infection, ^a thereof:	14 (23.7)	0 (0)


Lucendo et al, Gastro 2019




TEAE category	Double-b	ouble-blind dosing group Total													
	APT- 1011 3	APT- 1011 3	АРТ- 1011 1.5	APT- 1011 1.5	Placebo $(n = 0)$	Single- blind APT-	Total APT-	(N = 93)		Double-blind dosing group			Total APT-		
	mg BID (n = 16)	mg HS (n = 14)	mg BID (n = 19)	mg HS (n = 10)	()	1011 3 mg BID (n = 34)	1011 ^a 3 mg BID (n = 50)	mg BID			APT-1011 3 mg HS (n = 21)		APT-1011 1.5 mg HS (n = 21)	Placebo (n = 20)	1011 (N = 85)
TEAE ^b	12 (75)	13 (93)	14 (74)	7 (70)	0	22 (65)	34 (68)	68 (73)	Esophageal candidiasis	6 (30)	0	2 (9)	0	0	8 (9)
Mild	7 (44)	7 (50)	11 (58)	5 (50)	0	17 (50)	24 (48)	47 (51)	Oral/oropharyngeal candidiasis	2 (10)	1 (5)	2 (9)	0	0	5 (6)
Moderate	5 (31)	5 (36)	3 (16)	1 (10)	0	5 (15)	10 (20)	19 (20)							
Severe	0	1 (1)	0	1 (10)	0	0	0	2 (2)				Part 2			
TEAE related to study drug	8 (50)	2 (14)	5 (26)	0	0	6 (18)	14 (28)	21 (23)				sponders Only)			
TEAE leading to study discontinuation	0	0	0	1 (10)	0	0	0	1 (1)	-00						
Serious TEAE	0	1 (7)	0	1 (10)	0	0	0	2 (2)			X	_			
Serious TEAE related to study drug	0	0	0	0	0	0	0	0	12 14 18		28	36		44	52
FEAE resulting in leath	0	0	0	0	0	0	0	0	- APT-1011 3 mg HS	Study V	Veek 1011 1.5 mg E		T-1011 1.5 mg		Placebo
TEAE of special interest ^c	5 (31)	1 (7) ^d	3 (16)	0	0	2 (6)	7 (14)	11 (12)					Childr of Phi	ladelp	ospita bhia


Vehicle Number o patients		Number of patients who responded	Peak esophageal eosinophil count before OVB	Peak esophageal eosinophil count after OVB		
Splenda TM	34	31	50.5 eos/hpf (18 – 100 eos/hpf)	3.9 eos/hpf (0 – 70 eos hpf)		
Apple sauce	19	15	56.3 eos/hpf (20 – 100 eos/hpf)	9.8 eos/hpf (0 – 100 eos/hpf)		
Honey	7	6	53.7 eos/hpf (15 – 100 eos/hpf)	$\frac{8.6 \operatorname{eos/hpf^{}}}{(0-50 \operatorname{eos/hpf})}$		
Banana puree	1	1	8 eos/hpf	0 eos/hpf		
Compound	1	1	30 eos/hpf	0 eos/hpf		
Hot cocoa mix	1	1	30 eos/hpf	0 eos/hpf		
Pear sauce	1	1	30 eos/hpf	0 eos/hpf		
Rice cereal	1	0	100 eos/hpf	41 eos/hpf		
Tapioca starch	1	1	10 eos/hpf	3 eos/hpf		
Xanthan gum	1	1	70 eos/hpf	0 eos/hpf		

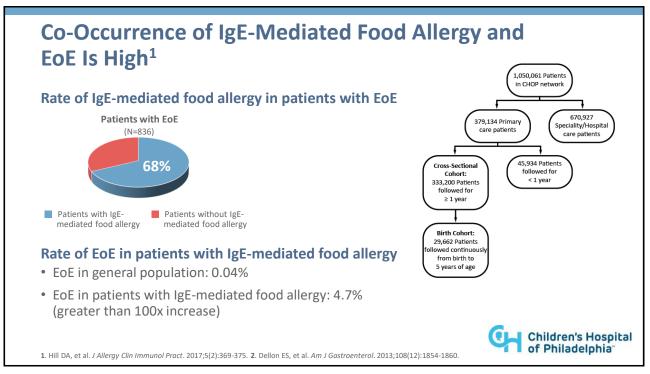


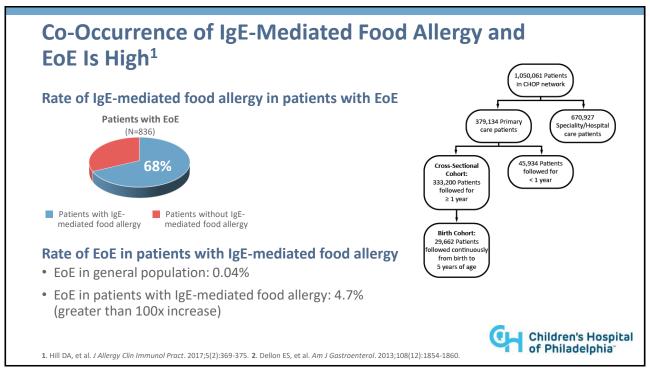
Selective Diet: Guess • Single Food Reintroduction in 36 children • 60 children • 74% to milk • 35 on SFGED 26% to wheat 25 Children on elemental diet • 17% to egg • Repeat Endoscopy 6 weeks • 10% to soy • 6% to peanut later • Single food in 72%, 2 foods in 8% and 3 foods • 74% of SFGED had <10 in 8% eos/hpf • 88% of elemental diet had <10 eos/hpf **Children's Hospital** Kagalwalla et al. Clin Gastro Hepatol 2006 of Philadelphia Kagalwalla et al. JPGN 2011 25



Conclusion from Dietary Trials

- Milk in the main trigger
- Consider starting with a simple milk elimination
- Should work 30-40% of children or adults



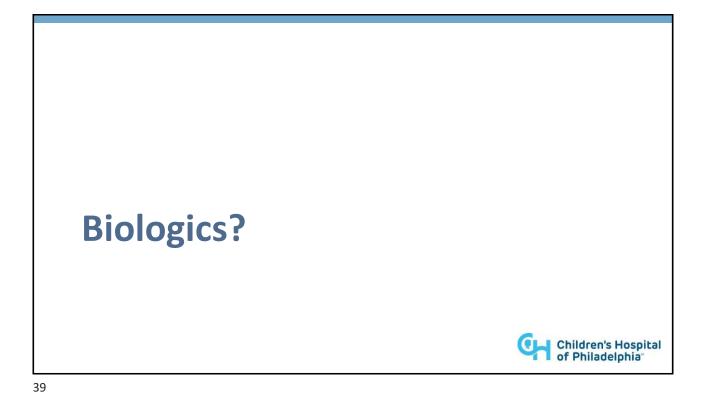

Is EoE an IgE mediated Disease?

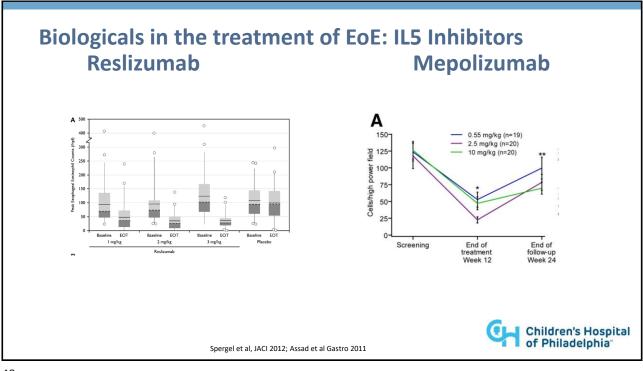
- In murine models, IgE knockout have no effect on disease
- SPT/Immunocap and Microarray do not work well (<15%)
- Omalizumab does not work
 Oral Immunotherapy in the FotBut
- DO NOT SKIN TEST

and E	οE						
viewed	all published	abstrac	ts and ar	ticles			
	Discontinuation	SPR-EoE by:			EoE	Discontinuation due to:	
	(any reason)				(biopsy)	_	
		Organ	Specific Symptom			SPR-EOE	EoE or
		System			_		SPR-EoE
		GI	Abdominal	Vomiting			
Rate		Symptoms	Pain				
Overall	14%	34%	32%	12%	5.3%	4.7%	5.6%
Egg	11%	ND	28%	17%	4.9%	2.7%	3.1%
Milk	12%	18%	30%	21%	5.4%	3.9%	4.6%
Peanut	16%	56%	40%	20%	5.2%	6.7%	8.5%

T and E	OE						
eviewed	all published	abstrac	ts and ar	ticles			
	Discontinuation	SPR-EoE by:			EoE	Discontinuation due to:	
	(any reason)				(biopsy)	_	
		Organ	Specific Symptom			SPR-EoE	EoE or
		System			_		SPR-EoE
		GI	Abdominal	Vomiting			
Rate		Symptoms	Pain				
Overall	14%	34%	32%	12%	5.3%	4.7%	5.6%
Egg	11%	ND	28%	17%	4.9%	2.7%	3.1%
Milk	12%	18%	30%	21%	5.4%	3.9%	4.6%
Peanut	16%	56%	40%	20%	5.2%	6.7%	8.5%

Can you get IgE food allergy after EoE?


5 case reports


- Milk avoidance x 2 yr, hives on reintroduction in 3 yo
- Wheat avoidance x 13 months, anaphylaxis in 65 yo
- Soy avoidance unclear time on OFC, anaphylaxis in 13 yo after six food elimination diet
- Milk avoidance x 1 yr, anaphylaxis at 7 yo
- Milk avoidance x 16 mo, urticaria at 20 month

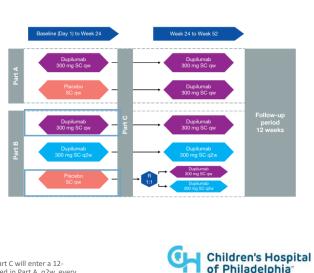
Hill et . J Allergy Clin Immunol Pract 2015; Gottlieb et al. Ann Allergy Asthma Immunol 2019-412 Alsalamah et al. Am J Gastro 2016; Ho Chehade J Allery Clinic Immunol Pract 2018

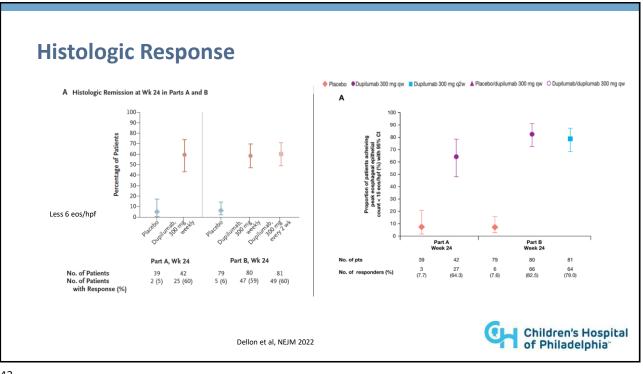
Children's Hospital of Philadelphia

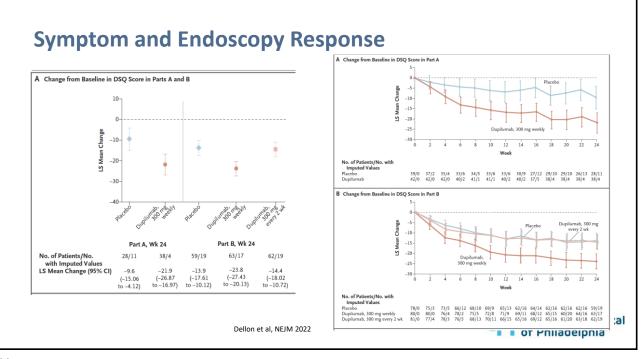
Lirentelimab and Benralizumab

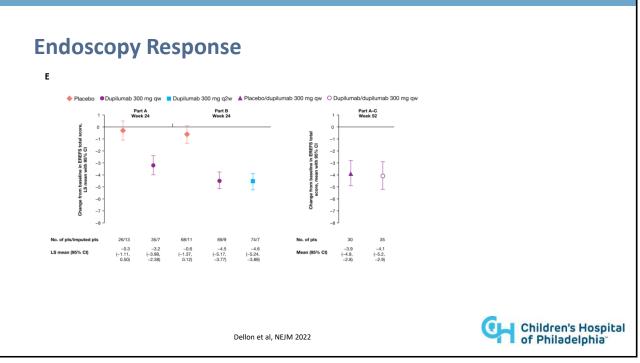
- DBPC Phase 2/3 trial with Lirentelimab (siglec 8 inhibitor) on 276 patients
- 24 week trial with pre/post endoscopy

Co-Primary Endpoints	Lirentelimab High Dose (n=91)	Lirentelimab Low Dose (n=93)	Placebo (n=92)
Histologic Endpoint: Proportion of responders (eos ≤6 /hpf) as determined by esophageal tissue eosinophil counts ¹	87.9% (p<0.0001)	92.5% (p<0.0001)	10.9%
Symptom Primary Endpoint: Absolute	DSQ Baseline: 34.2	DSQ Baseline: 36.4	DSQ Baseline: 35.2
mean change in patient reported Dysphagia Symptom Questionnaire (DSQ) ²	-17.4 (p=0.237)	-11.9 (p=0.247)	-14.6

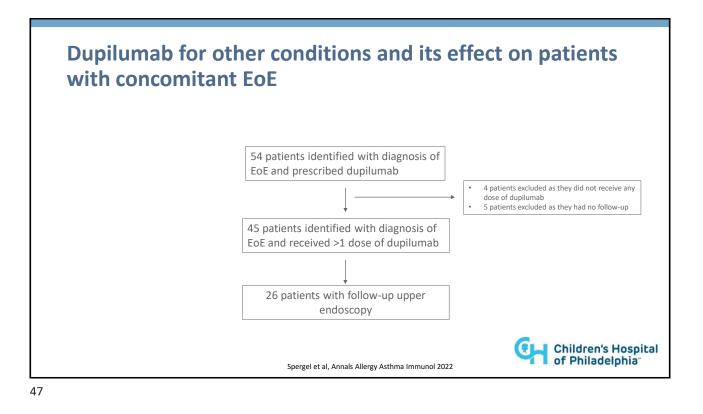

- Phase 2/3 with Benralizumab in 210 patients(>12 yo)
- Dosing every 4 weeks
- 24 week trial with pre/post endoscopy
- "The results from the MESSINA Phase III trial in eosinophilic esophagitis confirm that Fasenra achieved near complete depletion of tissue eosinophils, consistent with its mechanism of action, however this did not translate into an improvement in dysphagia symptoms. "

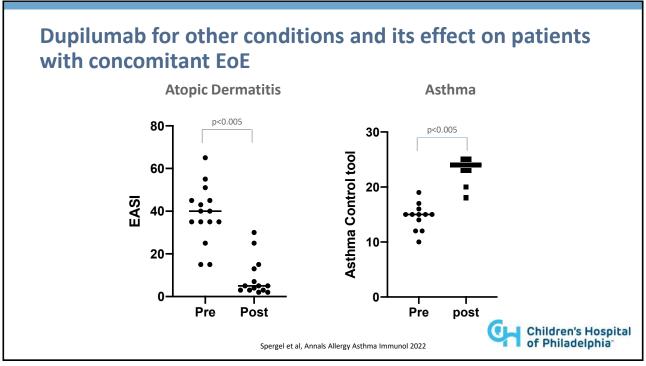

41

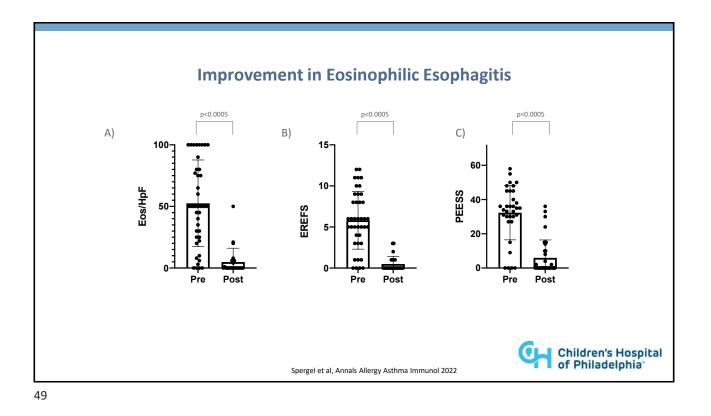

Phase 3 LIBERTY EOE TREET study


- In Part A of the 3-part, double-blind, placebocontrolled, phase 3 LIBERTY EOE TREET study (NCT03633617), dupilumab 300 mg qw SC vs placebo demonstrated significant improvements in symptomatic and histologic aspects of the disease up to 24 weeks in adults and adolescents with EOE and was generally well tolerated. In patients from Part A who continued to Part C, efficacy was sustained to Week 52¹
- Part B assessed the efficacy and safety of dupilumab 300 mg qw or q2w vs placebo up to 24 weeks in a larger sample size of adults and adolescents with EoE
- Here we present the dupilumab 300mg qw results of Part B

Patients enrolled in Part A cannot participate in Part B. Non-eligible patients who do not enter Part C will enter a 12week follow-up period. Enrollment for Part B began immediately after the last patient was enrolled in Part A. q2w, every 2 weeks; qw, weekly; R, randomization; SC, subcutaneous. 1. Dellon ES, et al. Presented at UEGW E-congress 2021; October 3, abstract LB10.

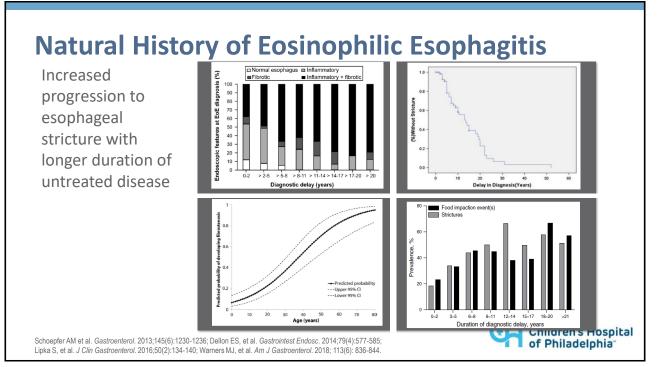






Dupilumab 300mg qw demonstrated an acceptable safety profile at Week 24

	Pa	rt A	Pai	rt B
Patients with event, n (%)	Placebo (n = 39)	Dupilumab 300 mg qw (n = 42)	Placebo (n = 78)	Dupilumab 300 mg qw (n = 80)
TEAEs	32 (82.1)	36 (85.7)	55 (70.5)	67 (83.8)
Deaths	0	0	0	0
Treatment-emergent SAEs ^a	0	2 (4.8) ^b	1 (1.3) ^c	5 (6.3) ^d
TEAEs leading to discontinuation	0	1 (2.4)	2 (2.6)	2 (2.5)
TEAEs occurring in \ge 10% of patients in any group				
Injection-site reaction	4 (10.3)	7 (16.7)	16 (20.5)	16 (20.0)
Injection site erythema	5 (12.8)	3 (7.1)	9 (11.5)	8 (10.0)
Nasopharyngitis	4 (10.3)	5 (11.9)	0	0
Injection site pain	3 (7.7)	4 (9.5)	4 (5.1)	7 (8.8)
Injection site swelling	1 (2.6)	3 (7.1)	2 (2.6)	10 (12.5)
Diarrhea	2 (5.1)	2 (4.8)	8 (10.3)	1(1.3)
Headache	4 (10.3)	2 (4.8)	9 (11.5)	6 (7.5)
Rash	4 (10.3)	0	0	0
ssed as not related to study drug. ^b Abdominal pain and uterine i	polyp. ^c Mental status changes. ^d De	pression suicidal, Campylobacter c	colitis,	of Philadelphia



FDA Question:

Management of asymptomatic EoE and/or EGID patients who have histologic abnormalities suggesting pathologic, allergic eosinophilic inflammation

- Patients can have poor perception of symptoms
- Is esophageal eosinophils risk factor for later complications
 - Adults have more fibrosis
 - Untreated disease has more fibrosis and strictures
- In medicine, inflammation needs to be controlled
 - Diabetes
 - Hypertension
 - Cholesterol
 - Inflammatory Bowel Disease
 - Asthma

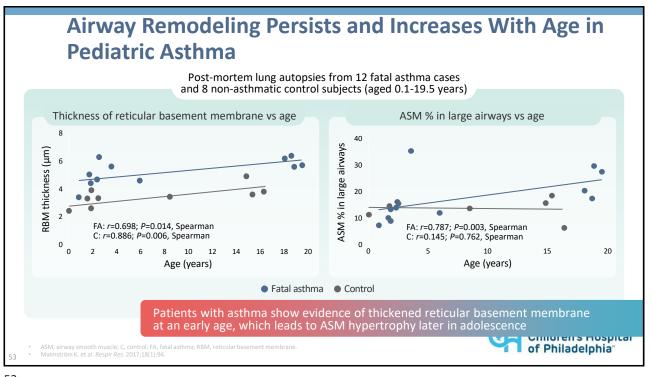
IFPS

Disease Control has better natural History

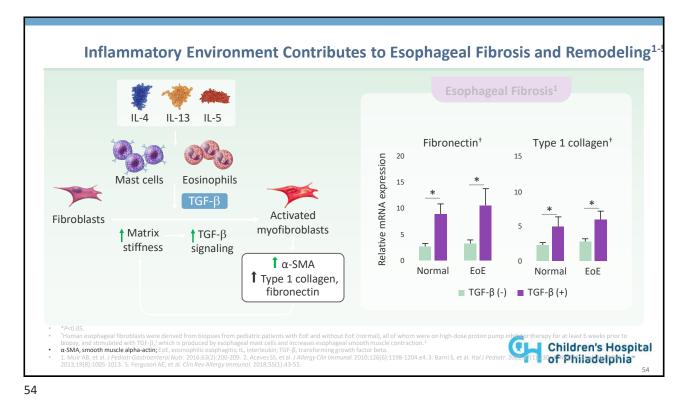
- Examined 105 CHOP-Penn Patients
- 12 years of follow

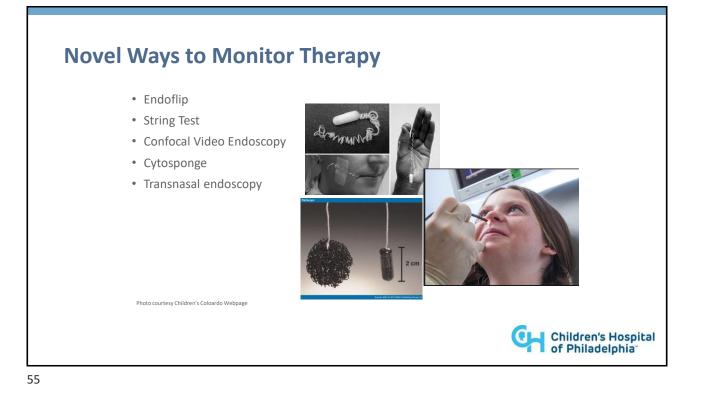
Histologic Disease Control*

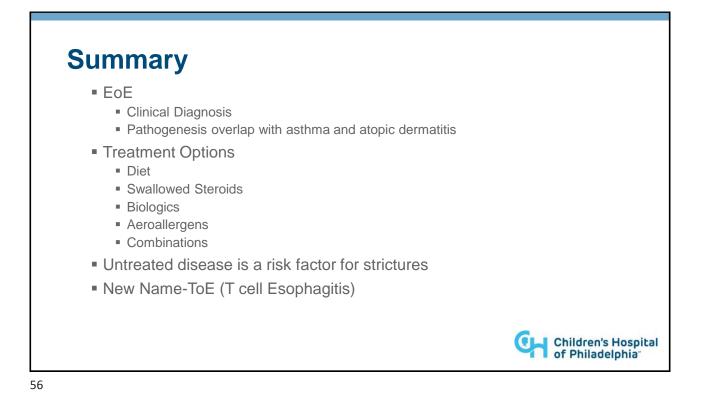
Histologic Remission Dysphagia on Presentation Impaction on Presentation


Lowest Eosinophil count < 10 /HPF

Age > 9


· Histologic remission eosinophils/hpf. H control was define consecutive endos remission.


v-up ion was defined as < Histologic disease ied as having <u>></u> 2 oscopies with histolog	tage of patient	100	10 10		
	,.e	° Number at risk	Time in years	20	
	No Histologic		22	2	
	Histologic		36	2	
HR [95% CI]	P-Value		1	4	
0.232 [0.084-0.64]	0.005	Cumulative numbe	r of events		
1.14 [1.03-1.27]	0.014	e Control 1	10	15	
1.105[1.027-1.189]	0.007	a Control	3	5	
0.108 [0.019-0.6016]	0.01		ie Histologie Control 🕂 Histologie Control 232, 95% Cl 0.084-0.64, p=0.005		
8.71 [2.83-26.8]	0.0002				
4.87 [1.72-13.8]	0.003		G H	Children's Hos of Philadelphia	pital 1"


Figure 1. Stricture Development by Histologic Disease Control

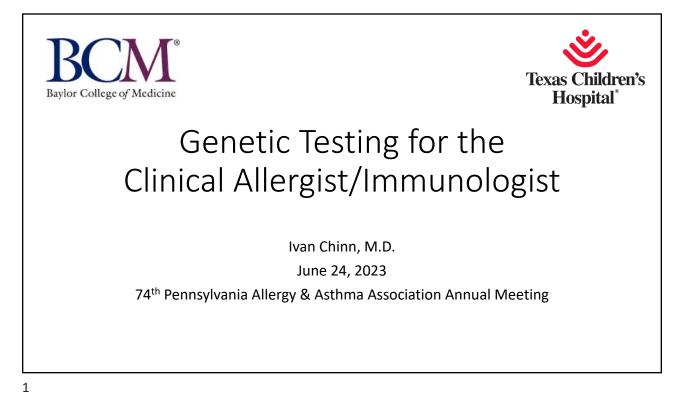
74th PAAA Annual Meeting

JUNE 23-25, 2023 The Hotel Hershey, Hershey, PA

Presentations for Saturday, June 24, 2023

8:00 am – 8:45 am	Genetic Testing for the Clinical Allergist/Immunologist Ivan Chinn, MD
8:45 am – 9:00 am	2022 PAERF Grant Recipient Presentation Impact of Anaphylaxis Plans in Multiple Languages in an Outpatient Pediatric Allergy Clinic Setting Kim Nguyen, MD
9:00 am – 9:45 am	Biologic Therapy for Allergic Skin Diseases Marc Serota, MD
9:45 am – 10:15 am	Annual Business Meeting
10:45 am – 11:30 am	Approach to the Allergy Patient with Hypereosinophilia <i>Amy Klion, MD</i>
11:30 am – 12:15 pm	Noninfectious Manifestations of Inborn Errors of Immunity Ivan Chinn, MD
12:15 pm – 1:00 pm	What's New and Different in Antibiotic Allergy? Penicillin Allergy: Then and Now Marcus Shaker, MD, MS, FAAP, FAAAAI, FACAAI
1:15 pm – 2:15 pm	WORKSHOP: Hypereosinophilic Syndromes- Evaluation and Management (Slides not Included) <i>Amy Klion, MD</i>

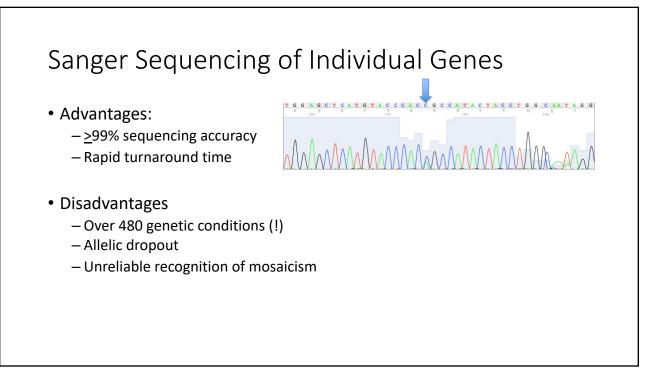
74th PAAA Annual Meeting

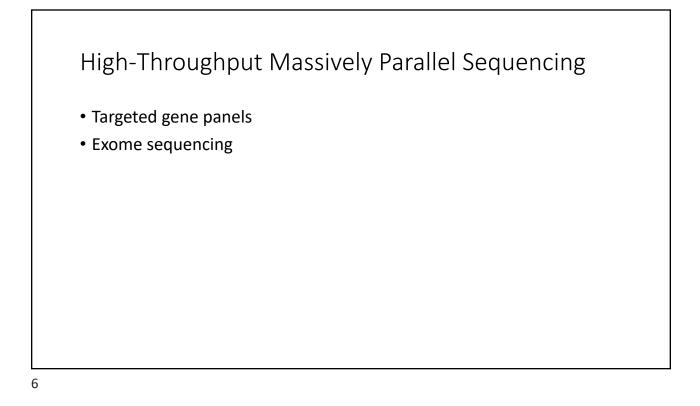

JUNE 23-25, 2023 The Hotel Hershey, Hershey, PA

Genetic Testing for the Clinical Allergist/Immunologist

Presented by: Ivan Chinn, MD

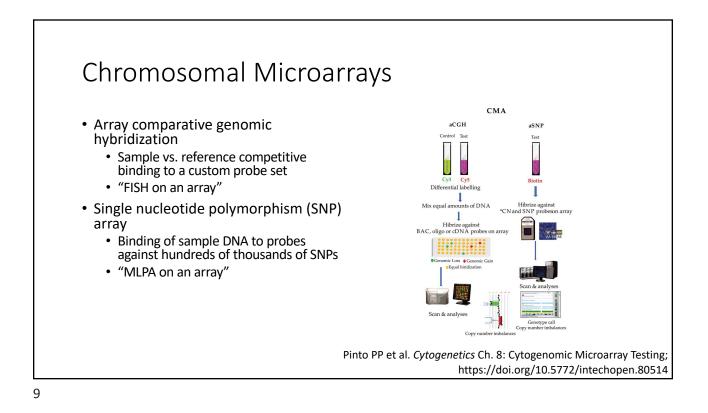
Saturday, June 24, 2023 8:00 a.m. – 8:45 a.m.

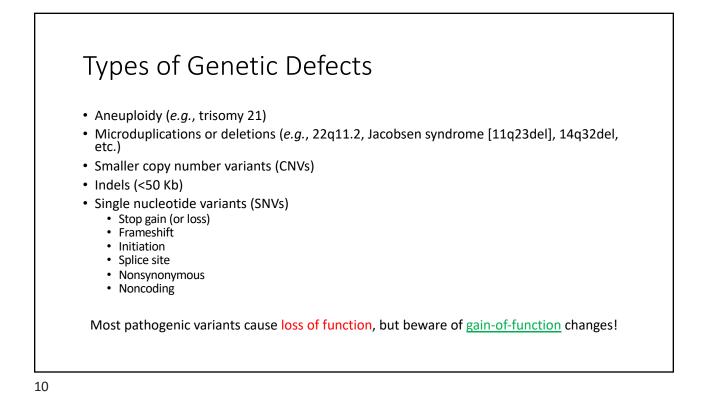

FAQs

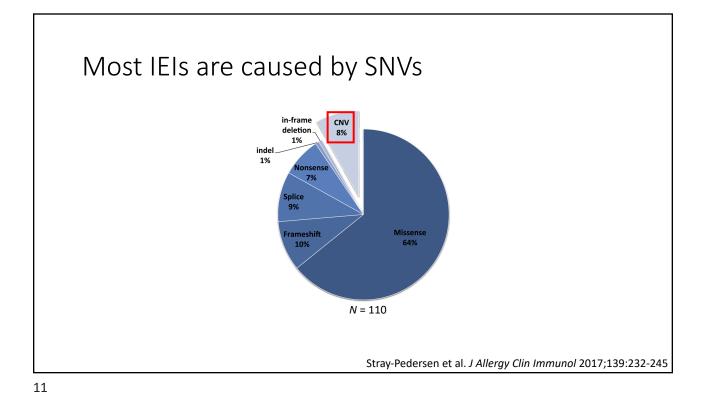

- What test should I order?
 - What are the options?
 - How do I choose?
- What do the results mean?

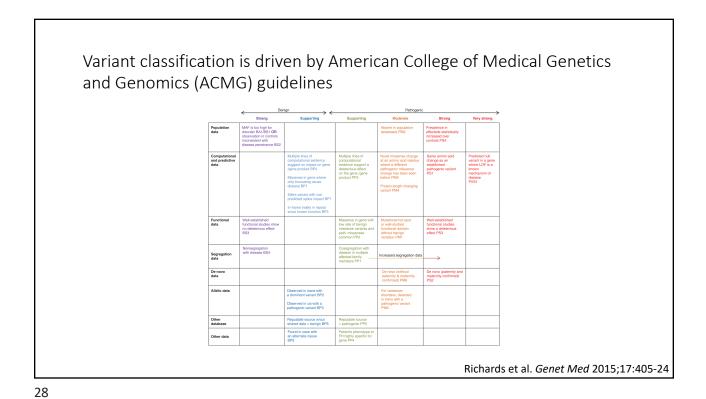
Genetic testing options (average A/I provider):

- Single gene sequencing
- Targeted panel testing
- Exome sequencing
- Whole genome sequencing
- Chromosomal microarray analysis

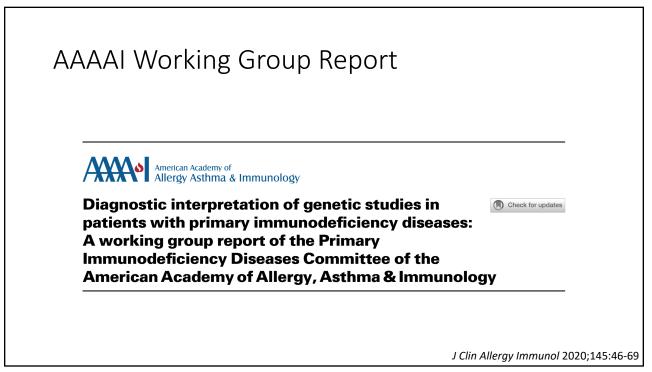


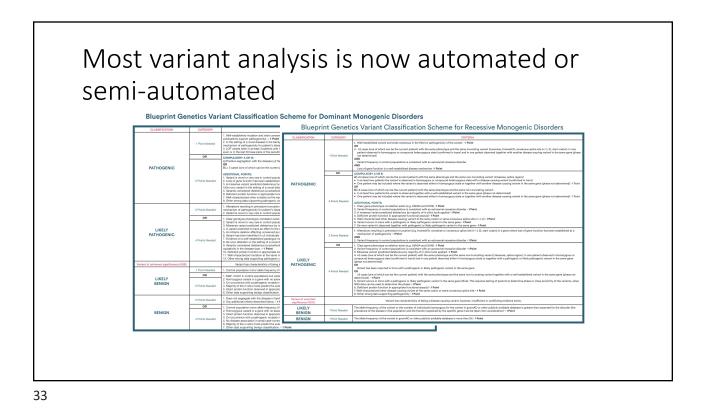





Targeted Panels vs. "Focused" Exomes: What Are You Getting?

- True targeted panels
 - Capture probes are custom designed
 - Very high read depth
 - Cannot be expanded
- "Focused" exomes
 - Exome sequencing platform
 - Variants reported only in genes requested
 - Standard exome read-depth (much lower)
 - Future additional analyses possible (e.g., research pipelines, novel genes)





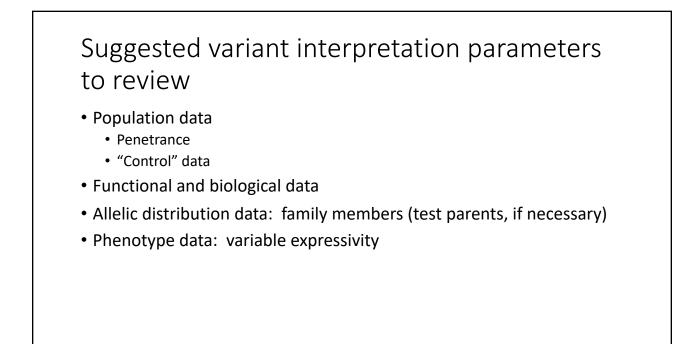
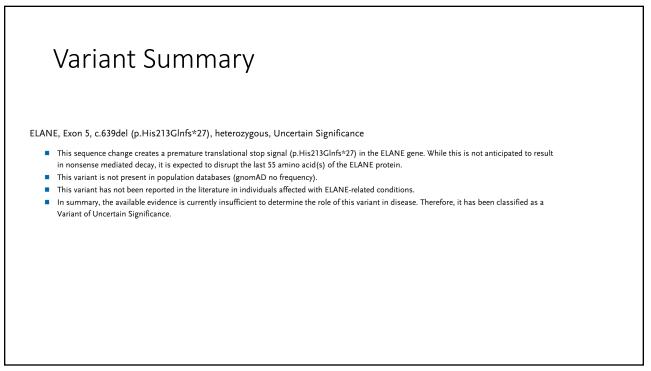
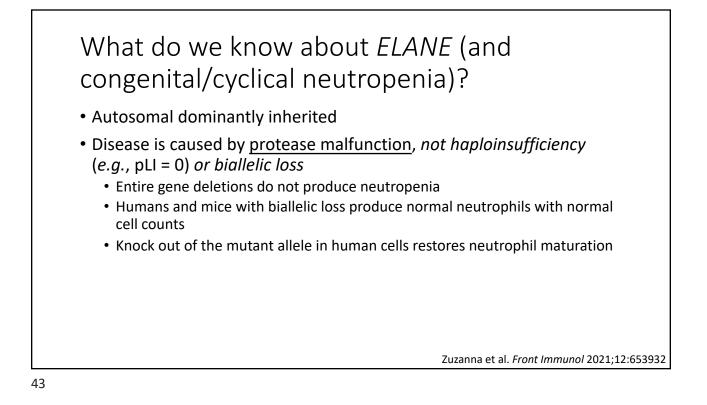

Benign	(i) 1 Stand-alone (BA1) OR	Pathogenic	(i) 1 Very strong (PVS1) AND
	(ii) ≥2 Strong (BS1–BS4)		(a) ≥1 Strong (PS1–PS4) OR
Likely benign	 (i) 1 Strong (BS1–BS4) and 1 supporting (BP1– BP7) OR 		(b) ≥2 Moderate (PM1–PM6) OR
	(ii) ≥2 Supporting (BP1–BP7)		(c) 1 Moderate (PM1–PM6) and 1 supporting (PP1–PP5) OR
Uncertain	(i) Other criteria shown above are not met OR		(d) ≥2 Supporting (PP1–PP5)
significance	(ii) the criteria for benign and pathogenic are		(ii) ≥2 Strong (PS1–PS4) OR
	contradictory		(iii) 1 Strong (PS1–PS4) AND
//. / .			(a)≥3 Moderate (PM1–PM6) OR
"VUS"	usually means that		(b)2 Moderate (PM1–PM6) AND \geq 2 Supporting (PP1–PP5) OR
the la	aboratory does not		(c)1 Moderate (PM1–PM6) AND ≥4 supporting (PP1–PP5)
have e	enough information	Likely pathogenic	(i) 1 Very strong (PVS1) AND 1 moderate (PM1– PM6) OR
	Ū		(ii) 1 Strong (PS1–PS4) AND 1–2 moderate (PM1–PM6) OR
(but v	ou might have or be		 (iii) 1 Strong (PS1–PS4) AND ≥2 supporting (PP1–PP5) OR
(Dut y			(iv) ≥3 Moderate (PM1–PM6) <i>OR</i>
• •			(v) 2 Moderate (PM1–PM6) AND ≥2 supporting
ab	le to obtain that		(PP1-PP5) OR

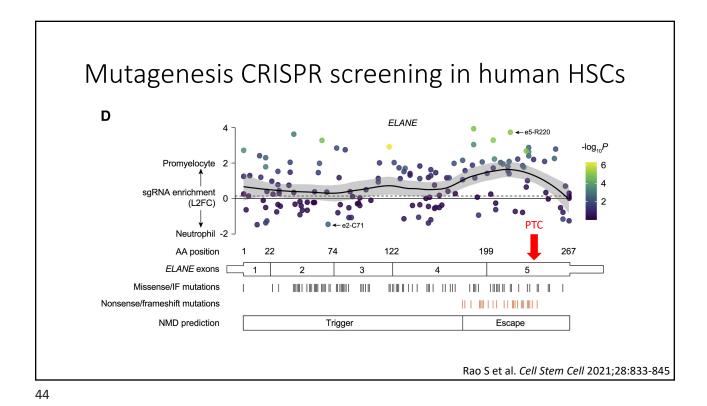
	Table 4. Evidence ar		nination of variant pa Evidence	thogenicity	Pathogenic Ev	idence	
	Type of Criteria	Strong	Supporting	Supporting	Moderate	Strong	Very Strong
	Collected population data	MAF exceeds disease	Reputable source suggests variant is	Reputable source suggests variant is	Absent or appropriately rare	Statistically higher	
		prevalence	benign	pathogenic	in population databases	prevalence in cases	
		MAF in controls inconsistent				compared to controls	
		with disease penetrance				controls	
	Functional and	Functional		Missense in gene	In mutational hot	Functionally	
	biological data	studies		with many	spot or domain	validated to	
		demonstrate no deleterious		pathogenic missense variants	with no known benign variation	produce a deleterious	
		effect		missense variants	penign variation	effect	
				Likely functional			
				impact in			
				immunologically plausible gene			
	A.B		to star the s	candidate"	11		
	Allelic distribution data	Nonsegregation with immunologic phenotype	In cis with a pathogenic variant in the same gene	Cosegregation with disease in affected family members	Increased cosegregation with disease in family members	Even greater cosegregation with disease in family	
		phenotype	same gene		ramily members	members	
		Inappropriate			De novo (parents		
		segregation with disease ^c			unconfirmed)	De novo (parents	
		with disease			In trans with a	confirmed)	
					pathogenic variant in the same gene		
	Variant-based		Computational	Computational	Novel missense	Same amino	Predicted null
	computational		evidence argues	evidence supports a	change at same	acid change as	variant in gene
	data		against impact on gene product	deleterious effect on gene product	residue known to be affected by	confirmed pathogenic	for which loss of function
			gene product	on Bene broduct	pathogenic	variant	causes disease
					missense		
					change(s)		
					Predicted to alter protein length		
	Other		Alternate cause	Phenotype or			
			detected	family history highly specific for gene ^d			
			1	specific for gene	1	1	
	Pathogenic					1	1
					2		1
				1 2	1		1
						2	1
					3	1	
				2	2	1	
	Likely pathogenic			4	1	1	1
	Likely pathogenic				1	1	1
				2		1]]
				2	3		
				4	1		
	Benign Likely benign	1 or 2'	1	4			
J Allergy Clin Immunol 2020;145:46-69	Likely benign	1	2	-			
	1						

Overall variant interpretation parameters Population data Functional and biological data Allelic distribution data Computational data Phenotype data

gnomAD contains potential immune disease cohort data


- Inflammatory Bowel Disease:
 - 1000IBD project
 - Helsinki University Hospital Finland
 - NIDDK IBD Genetics Consortium
 - Quebec IBD Genetics Consortium
- The Cancer Genome Atlas




Case #1:

- 4 month-old term girl
- Difficulty with thrush at 1 month no other infections
- Initially presented with encephalopathy: positive influenza test
- · Developed seizures followed by cardiac arrest
- Placed on ECMO and weaned off
- In PICU: pseudomonal sepsis and HLH
- Candidal esophagitis
- Ecthyma gangrenosum (*Pseudomonas*-positive) and bilateral necrosis of nasal and basilar skull bones with erosion extending through middle ear to tympanic membranes: *E. coli, E. faecalis,* and enteric organisms
- Found to be neutropenic and placed on G-CSF

Ge	enetic Results		
GENE	VARIANT	ZYGOSITY	VARIANT CLASSIFICATION
C5	c.1680G>A (p.Trp560*)	heterozygous	PATHOGENIC
ELANE	c.639del (p.His213Glnfs*27)	heterozygous	Uncertain Significance ???
G6PD	c.376A>G (p.Asn126Asp)	heterozygous	Uncertain Significance
GUCY2C	c.1024A>C (p.Asn342His)	heterozygous	Uncertain Significance
HYOU1	c.1647C>T (Silent)	heterozygous	Uncertain Significance
RTEL1	c.2600C>T (p.Pro867Leu)	heterozygous	Uncertain Significance
	c.113A>T (p.Asn38lle)	heterozygous	Uncertain Significance

GENE VARIANT ZYGOSITY VARIANT CLASSIFICATION RES TOP2B c.113A>T (p.Asn38lle) heterozygous Uncertain Significance Dete	SULT
GENE VARIANT ZYGOSITY VARIANT CLASSIFICATION RES TOP2B c.113A>T (p.Asn38lle) heterozygous Uncertain Significance Dete	ULT
TOP2B c.113A>T (p.Asn38ile) heterozygous Uncertain Significance Deter	ULT
GENE VARIANT ZYGOSITY VARIANT CLASSIFICATION RES TOP2B c.113A>T (p.Asn38ile) heterozygous Uncertain Significance Dete	ULT
TOP2B c.113A>T (p.Asn38ile) heterozygous Uncertain Significance Deter	ULT
TOP2B c.113A>T (p.Asn38ile) heterozygous Uncertain Significance Dete	
	ected
C5 c.1680G>A (p.Trp560*) N/A PATHOGENIC Note	detected
	detected
	detected
20%	
Mother 20%	
violiter	
GENE VARIANT ZYGOSITY VARIANT CLASSIFICATION RES	SULT
C5 c.1680G>A (p.Trp560*) heterozygous PATHOGENIC Det	tected
	tected

Parental mosaicism is well-known in this disease

Two paternal mosaicism of mutation in *ELANE* causing severe congenital neutropenia exhibit normal neutrophil morphology and ROS production

Qiao Liu^a, Liang Zhang^a, Zhou Shu^b, Yuan Ding^b, Xue-Mei Tang^b, Xiao-Dong Zhao^{a,b,c,*}

¹ Chang Qing Key Laboratory of Odda Tafoisian and Immungi, Children'i Hoppital of Changging Medical University, Changging 640014, China ¹ Denism of Immunophysic, Children's Hought of Changging Medical University, Changging 40014; China ¹ Ministry of Education Key Laboratory of Odd Development and Diarden, Key Laboratory of Pelatarias in Changging, Changging Burnatistinal Science and Technology Cooperation Center for Chall Development and Diarden, Challers Mithail of Changging Medical University, Changging 40014; China ¹ Cooperation Center for Chall Development and Diarden, Challers Mithail of Changging Medical University, Changging 40014; China ¹ Chang Chang Changeing 40014; China Chang Chang

Clinical Immunology 203 (2019) 53-58

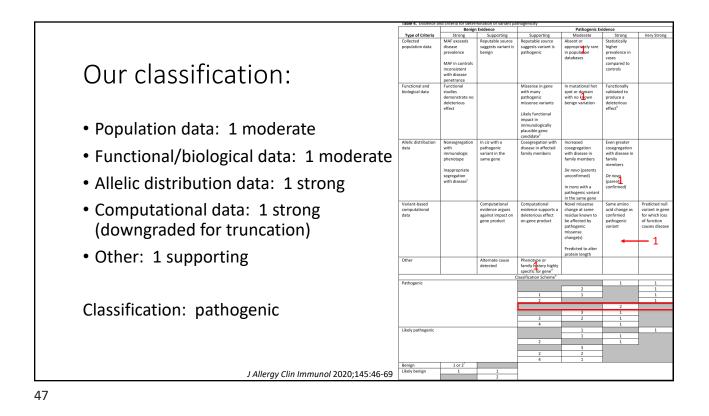
Mosaicism of an ELANE Mutation in an Asymptomatic Mother

Tomonari Shigemura¹ · Norimoto Kobayashi¹ · Kazunaga Agematsu² · Osamu Ohara³ · Yozo Nakazawa¹ Journal of Clinical Immunology (2019) 39:106–111

Paternal Somatic Mosaicism of a Novel Frameshift Mutation in ELANE Causing Severe Congenital Neutropenia

Hee-Jung Kim, MD, PhD,¹⁺ Min-Jung Song,¹ Ki-O Lee,² Sun-Hee Kim,¹ and Hee-Jin Kim¹ Pediatr Blood Cancer 2015;62:2229–2231 Mosaicism of an *ELANE* Mutation in an Asymptomatic Mother in a Familial Case of Cyclic Neutropenia

Osamu Hirata¹ · Satoshi Okada¹ · Miyuki Tsumura¹ · Shuhei Karakawa¹ · Itaru Matsumura² · Yujiro Kimura³ · Toshiro Maihara⁴ · Shin'ichiro Yasunaga⁵ · Yoshihiro Takihara⁵ · Osamu Ohara⁶ · Masao Kobayashi¹


J Clin Immunol (2015) 35:512-516

Paternal mosaicism proves the pathogenic nature of mutations in neutrophil elastase in severe congenital neutropenia

Phil J. Ancliff, Rosemary E. Gale, Michael J. Watts, Ri Liesner, Ian M. Hann, Stephan Strobel, and David C. Linch BLOOD, 15 JULY 2002 • VOLUME 100, NUMBER 2

Mechanism:

- De novo event in the parent very early in embryogenesis
- Negative selection pressure during myelopoiesis

Supporting Very strong Or using ACMG: Supporting Strong Population data IAF is too high for isorder BA1/BS1 OR • PM2 Computational and predictive data • PVS1 Strong • PM1 • PS2 Functiona data • PP4 Nonsegregation with disease BS4 Segregation data 2 Strong + 2 Moderate + 1 De novo data Supporting = Allelic data Dbserved in trans with cominant variant BP2 Pathogenic ed in *cis* with a Other database Other data

Conclusions

- Genetic testing is strongly indicated in patients with suspected inborn errors of immunity
- Choose a test based upon various considerations
 - Sequencing provides the greatest diagnostic yield
 - CNV analyses can add a measurable increase
- Variant analysis by clinical laboratories is imperfect
- Automated and semi-automated methods cannot yet replace the expertise of a trained allergy/immunology provider: review the results carefully
- Pursue your intuitions!

56

74th PAAA Annual Meeting

JUNE 23-25, 2023 The Hotel Hershey, Hershey, PA

2022 PAERF Grant Recipient Presentation

Impact of Anaphylaxis Plans in Multiple Languages in an Outpatient Pediatric Allergy Clinic Setting

> Presented by: Kim Nguyen, MD

Saturday, June 24, 2023 8:45 a.m. – 9:00 a.m.

Impact of multi-language anaphylaxis plans in an outpatient pediatric allergy clinic setting

PAERF Grant Presentation June 24, 2023

Kim Nguyen, MD Fellow Physician Division of Allergy & Immunology Children's Hospital of Philadelphia

Food allergy

Children's Hospital of Philadelphia

 In the US, >40% of children with food allergy reported ≥1 lifetime allergy related ED visit

Children's Hospital of Philadelphia

- There are significant gaps in recognition and appropriate treatment of anaphylaxis by patients and caregivers.
- Both national and international guidelines recommend the use of anaphylaxis management plans given to patients and caregivers.

Gupta, R.S., et al. *Pediatrics* (2018) Kastner M, et al. *Allergy* (2010) Nurmatov U, Worth A, Sheikh A. *J Allergy Clin Immunol* (2008)

1

Disparities in food allergy

Children's Hospital

a

- Food allergy-related ED visits are more frequent in Black and Hispanic children vs. White children and in those from socioeconomically disadvantaged backgrounds
- Increases in self-reported U.S. food allergy rates are greatest in non-Hispanic Black children
- Food allergy is more likely to occur in children from urban vs. rural areas
- Children from socioeconomically disadvantaged backgrounds are less likely to undergo allergy evaluation
- Children from minority groups are less likely to be given an anaphylaxis plan

Bozen A., et al. Ann Allergy Asthma Immunol (2020) Mahdavinia M., et al. JACI: In Practice (2017) Keet C., et al. Ann Allergy Asthma Immunol (2014) Smith, et al. WAO Journal (2015)

Background

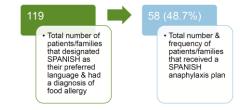
- There is limited information on language as a barrier to utilization of anaphylaxis plans.
- Impact of limited English proficiency on asthma action plan use:
 - A cross-sectional bilingual survey was distributed at an urban, academic, pediatric emergency department.
 - Surveys were completed by adult caregivers of children with asthma who sought PED care for asthma related chief complaints.
 - Study found a 25% difference (p = .01) in action plan use rates between limited English proficiency caregivers (39%) and English proficient caregivers (64%).

Objective

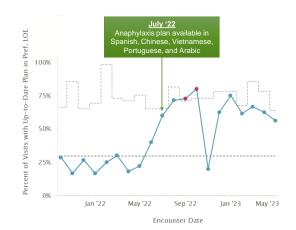
To evaluate and address language barriers in the setting of food allergy management, specifically the availability and use of anaphylaxis plans in a patient/caregiver's preferred language

Children's Hospital of Philadelphia

Methods


- Identify most common languages spoken by food-allergic patients and their families seen in allergy clinic at CHOP
- Translate and implement anaphylaxis plans in the most common languages other than English seen in our patient population
- · Track distribution of anaphylaxis plans in the primary language of patients' families
- Survey and compare English-speaking and ESL caregivers regarding perception of food allergy education received and level of comfort regarding food allergy management

Distribution of preferred languages


- There were 30 different languages (excluding English and unknown) identified among the 15,161
 patients seen between July 1, 2018 and July 31, 2021 in all CHOP Allergy sites who had a food
 allergy listed in their medical record.
- · These are the most common preferred languages:

Preferred language	Number of patients
ENGLISH	14,766
SPANISH	119
MANDARIN	35
VIETNAMESE	28
ARABIC	25
PORTUGUESE	22

Patients with Up-to-Date Anaphylaxis Plans Provided in Preferred Language Other than English as of Visit

IgE-mediated Food Allergy: LOE - Translated Plan Available

Children's Hospital of Philadelphia

Allergy Survey

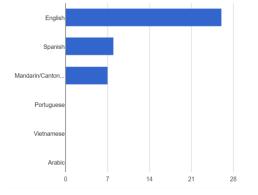
Arabic	Chinese (PRC)	🗸 English	Portuguese	Spanish	Vietnamese		
Please co	omplete the surv	vey below.					
Thank yo	u!						
Packgrou	und Information						Allergy Teaching
backgrou	and information						Allergy leaching
	your relationship wide value	o to the patie	ent?			Y	Does your child have an epinepl EpiPen or Auvi-Q)? * must provide value
	your preferred la wide value	inguage?				~	Were you taught how to use an * must provide value
	ent is allergic to wide value	(please chec	k ALL that apş	oly):	 Milk Egg Peanut Soy Wheat Sesame 		What Information did you get w diagnosed? (please check all tha
					Fish Shellfish Tree Nuts Other food	ds	Did you receive an anaphylaxis * must provide value

Allergy Teaching	
Does your child have an epinephrine auto-injector (e.g. EpiPen or Auvi-Q)? * must provide value	○ Yes ○ No ○ Do not know reset
Were you taught how to use an epinephrine auto-injector? * must provide value	○ Yes ○ No ○ Do not know reset
What Information did you get when the allergy was diagnosed? (please check all that apply)	How to recognize an allergic reaction How to avoid food allergens How to treat an allergic reaction I do not remember what information I got I did not receive any information
Did you receive an anaphylaxis plan? * must provide value	○ Yes ○ No ○ Do not know reset

	Not confident	Slightly confident	Moderately confident	Quite confident	Extremely confident
Knowing how to avoid food allergens * must provide value	0	0	0	0	\bigcirc
Recognizing the signs of an allergic reaction * must provide value	0	0	0	0	O
Knowing when to give the epinephrine auto-injector * must provide value	0	0	0	0	O
Giving the epinephrine auto-injector	0	0	0	0	res
correctly * must provide value					roc
	he epinephrine	auto- 🔿 A	ways 🔿 Sor	netimes 🔿 Nev	res /er rese
* must provide value How often do you or your child carry t injector?	ency departme	0 /	Iways O Sor 25 O No	netimes O New	ver

Recruitment for survey

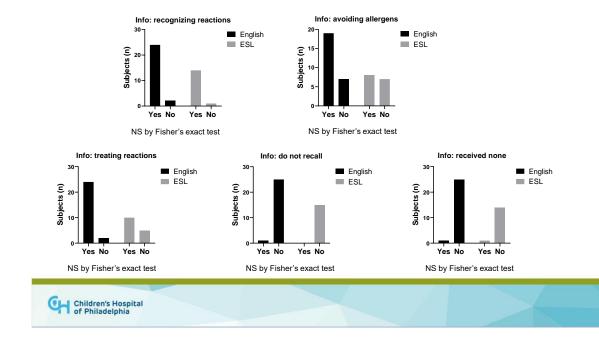
Screening


GL

- Established Allergy patient with known IgE-mediated food allergy
- Preferred language: English, Spanish, Arabic, Cantonese, Mandarin, Portuguese, or Vietnamese
- Screen by reviewing upcoming Allergy clinic schedule in Epic, food challenges, and data pulls from prior visits
- Recruit in person during an in-person Allergy visit or via telephone
 - Interpretalk used for ESL families

Survey results

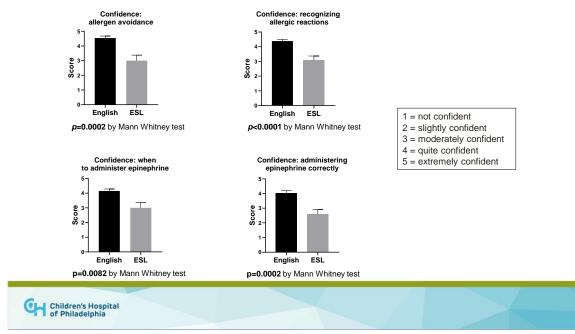

- · Completed surveys
 - 41 total
 - 26 English
 - 15 non-English
 - 8 Spanish
 - 7 Mandarin

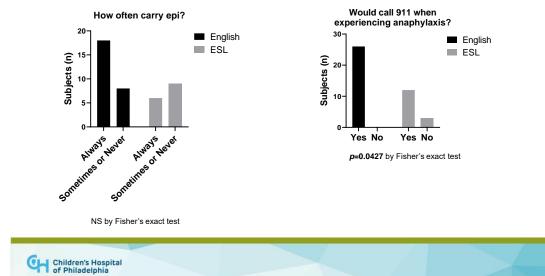


Children's Hospital of Philadelphia

13

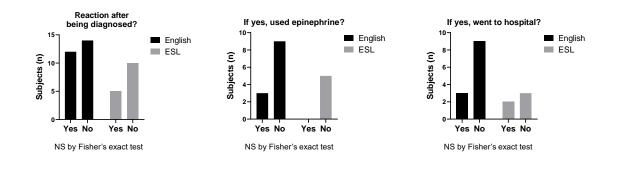
Survey results





What information did you receive when the allergy was diagnosed?

15


Confidence in food allergy management

Food allergy management

Food allergy management

Barriers and limitations

- Translation of documents takes time and can be costly.
- New staff (providers, nursing) may not be aware of available resources for families. Veteran staff may need reminders/refreshers due to change in normal workflow.
- Recruitment of ESL caregivers for the survey was challenging → small sample size
- Supplementary educational handouts (food allergen avoidance) are available only in English, which may have adverse affect on ESL family knowledge.

19

Conclusion

- Having anaphylaxis plans available in multiple languages is a step towards addressing disparities in food allergy education
 - Distribution rate of anaphylaxis plans in a patient/caregiver's preferred language increased after implementation, but can improve with ongoing advocacy
- Results of the survey suggest that when compared to English-speaking families, ESL families...
 - · Are less likely to have an epinephrine autoinjector
 - Are less likely to have an anaphylaxis plan or know if they have an anaphylaxis plan
 - · Have less confidence and knowledge in food allergy management

Future directions

- Expand efforts to translate the anaphylaxis plan and supplemental handouts in additional languages.
- Implement an alert within Epic to remind providers of the necessity of providing a language-appropriate anaphylaxis plan
- Examine whether receipt of language-appropriate anaphylaxis plan is associated with fewer adverse outcomes long-term, such as having fewer hospital visits related to anaphylaxis and/or having a higher rate of having an up-to-date epinephrine autoinjector prescription

Acknowledgements

- · Pennsylvania Allergy and Asthma Association PAERF Grant
- CHOP Diversity, Equity, and Inclusion Mentorship Pipeline Award
- · CHOP Allergy and Immunology Division
- CHOP Quality and Patient Safety (QPS)
- · Juhee Lee, MD mentor
- · Torrin Davis, MPH QPS improvement advisor
- Stan Gabryszewski, MD, PhD
- · Sarah Nathanson, RN, BSN and CHOP Allergy nursing staff
- · Clinical research coordinators (Shruti Patel, Pavithra Vinnakota, Jacob Cao)
- · Clinical informatics support (Sal Corso, Bridget Rauch, Beth Kauffman)
- Biostatistics and Data Management Core

Children's Hospital of Philadelphia

74th PAAA Annual Meeting

JUNE 23-25, 2023 The Hotel Hershey, Hershey, PA

Biologic Therapy for Allergic Skin Diseases

Presented by: Marc Serota, MD

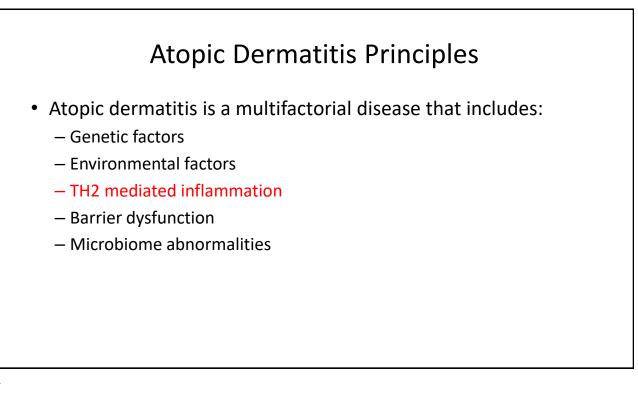
Saturday, June 24, 2023 9:00 a.m. – 9:45 a.m.

Biologics Systemics in Allergic Skin Disease

Marc Serota, MD FAAD, FAAAAI, FACAAI

Peak Dermatology Rocky Mountain VA Medical Center/University of Colorado

> Board Certified: Dermatology Allergy/Immunology Pediatrics

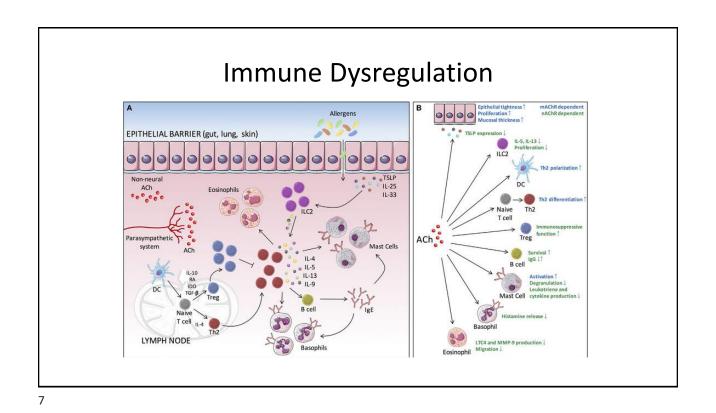

1

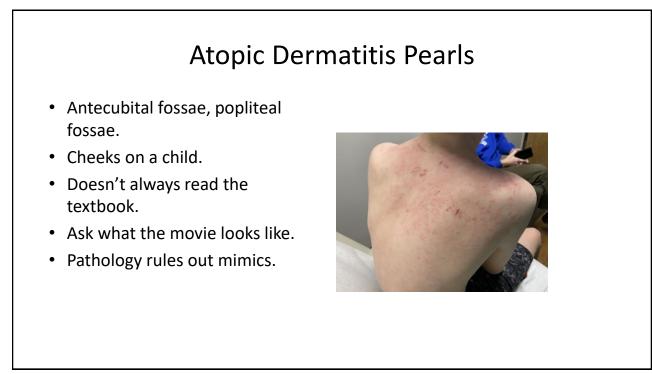
Disclosures

• Consultant for Regeneron, Sanofi-Genzyme, Genentech, Pfizer, Amgen, Incyte, UCB, Dermavant, Arcutis.

Objectives

- 1. Learn the pathophysiology of atopic dermatitis and chronic urticaria.
- 2. Review current treatment options for atopic dermatitis and chronic urticaria.
- 3. Discuss future treatments in development for atopic dermatitis and chronic urticaria.

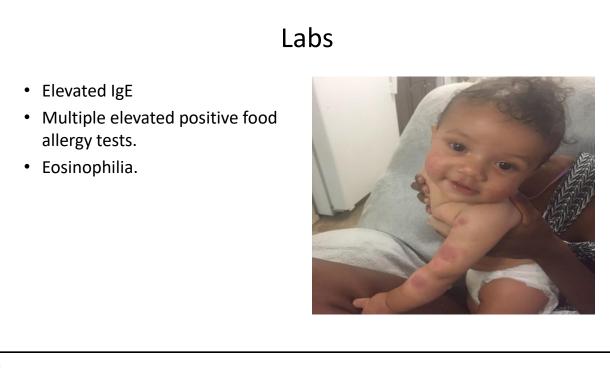

Atopic Dermatitis Overview


- Around 7% incidence in U.S. adults.
- Most cases present initially before age 5 with around 50% persist into adulthood.
- Family history of atopy is the strongest risk factor with around 70% of patients having a family history of atopy.

5

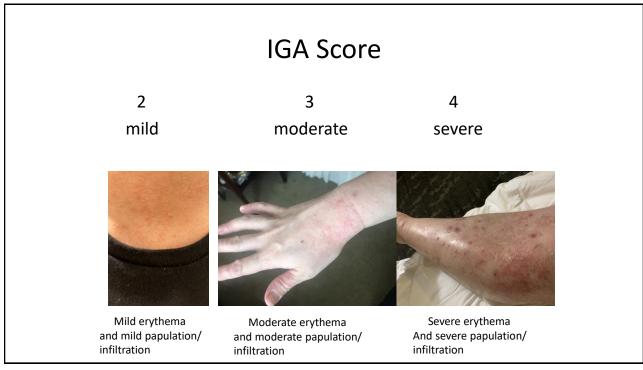
Genetic Factors

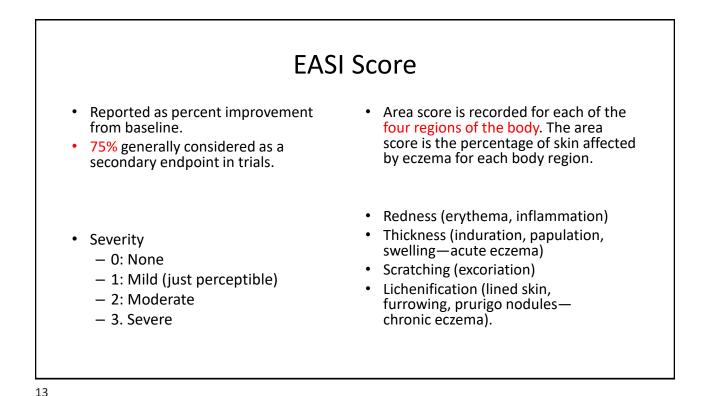
- Loss of function of FLG gene (profilaggrin deficiency).
 - Impaired barrier
 - Impaired tight junction formation.
 - Decreased water retention
 - Altered lipid formation
- 31 loci associated with the epidermal differentiation complex and genes involved in the regulation of innate host defenses and T cell functioning have been identified.

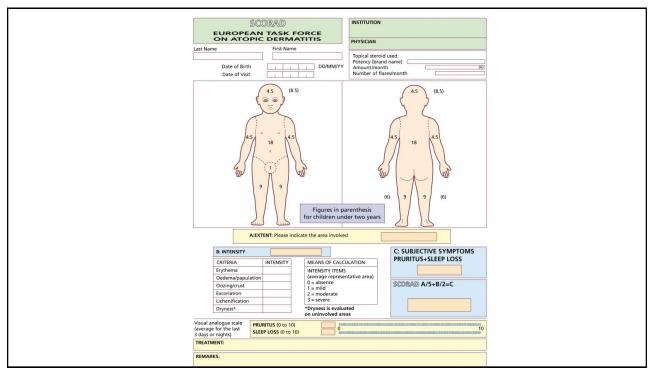


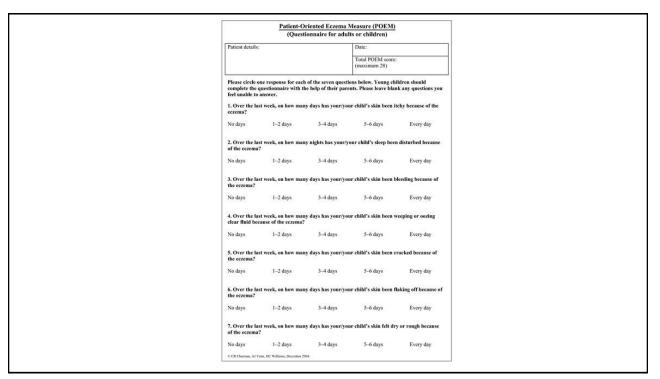
Difficult cases

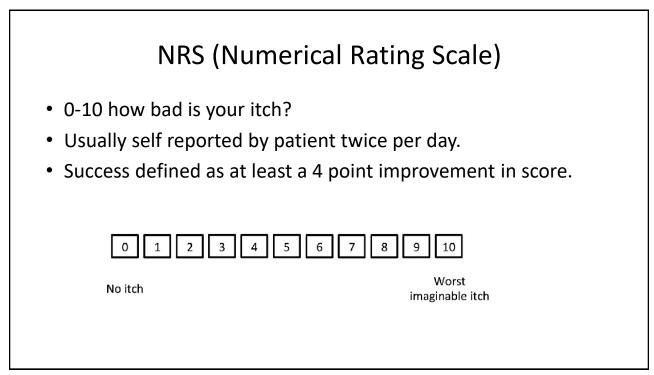
- Personal or family history of atopy.
- Treatment failures and successes.
- Biopsy for mimics.
- Assess for confounding variables.
- Assess for compliance with treatments.

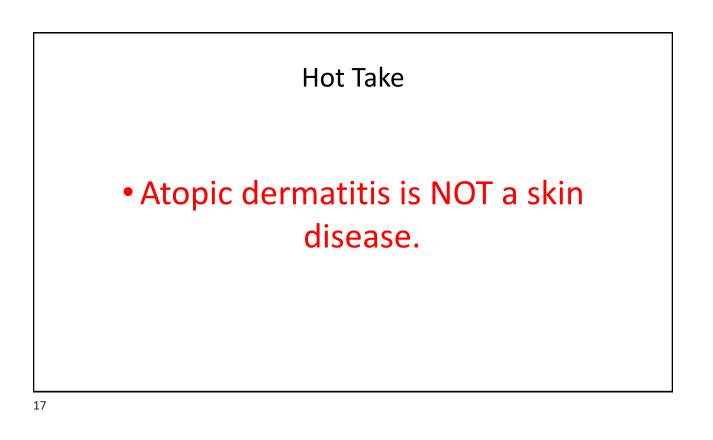


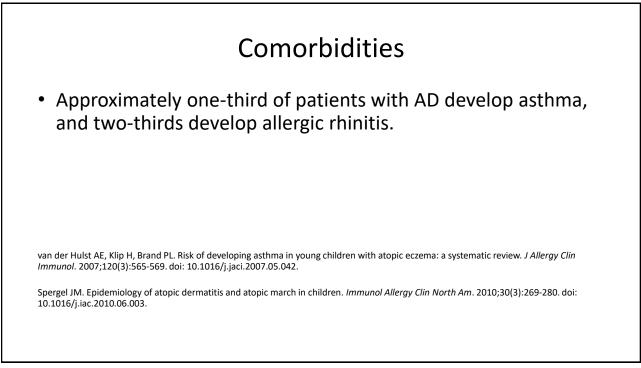



Assessment tools

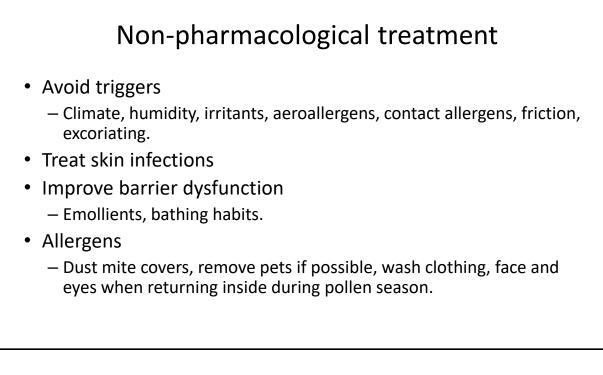

- IGA (Investigator Global Assessment) score
- EASI (Eczema Area and Severity Index) score
- SCORAD (Scoring Of Atopic Dermatitis) index
- POEM (Patient-Oriented Eczema Measure)
- NRS (Numerical Rating Scale) for pruritus





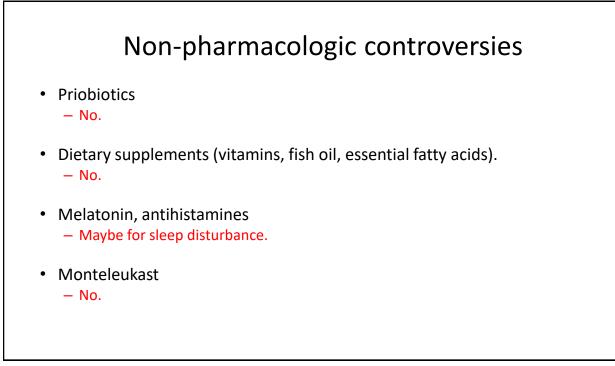


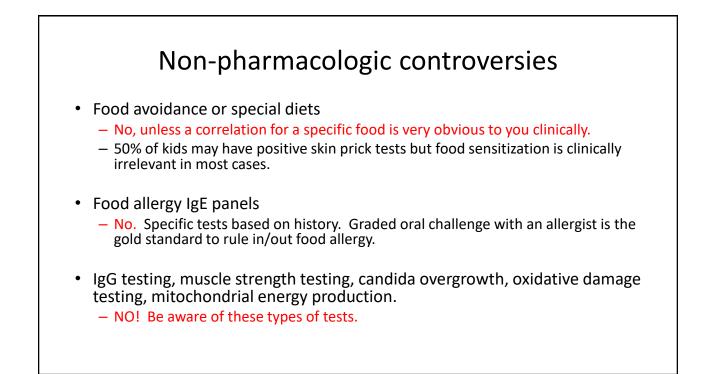
• Atopic dermatitis is NOT a skin disease.

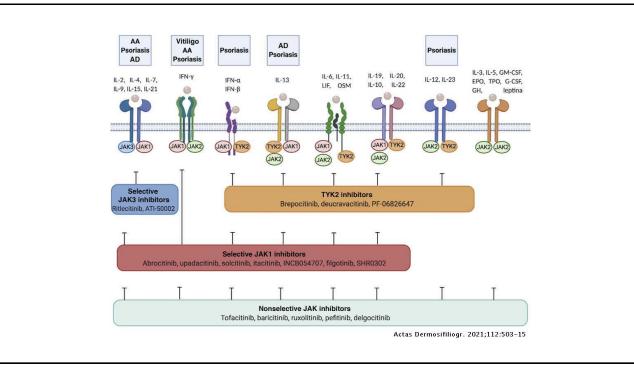

• Atopic dermatitis is a SYSTEMIC disease with CUTANEOUS manifestations.

<text><text><text><text><text>

The Changing Treatment Paradigm

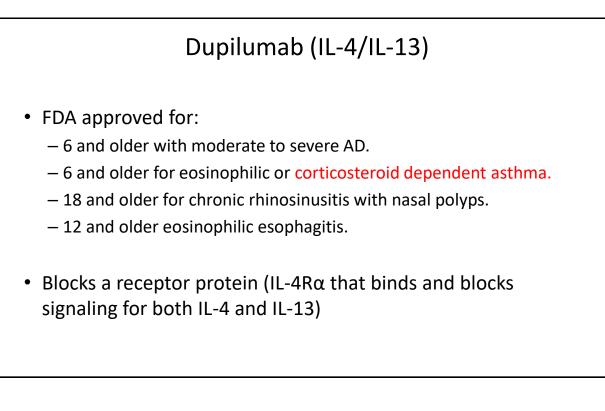

- OLD:
 - Treat each atopic disease symptomatically and locally.
 - Topical steroids.
 - Topical calcineurin inhibitors.
 - Systemic immunosuppressives as a last resort.
- NEW:
 - Treat atopic disease as a systemic disease.
 - Target Th2 mediated inflammation.
 - Treat multiple atopic diseases at once.
 - Focus on controllers and rescue medications for flares.
 - Try to inhibit the propagation of Th2 differentiation early in the process.

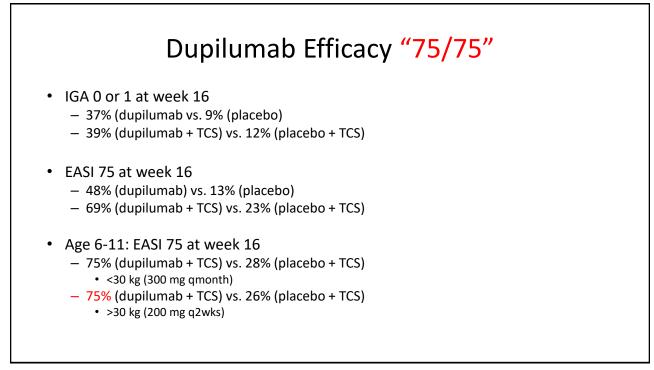


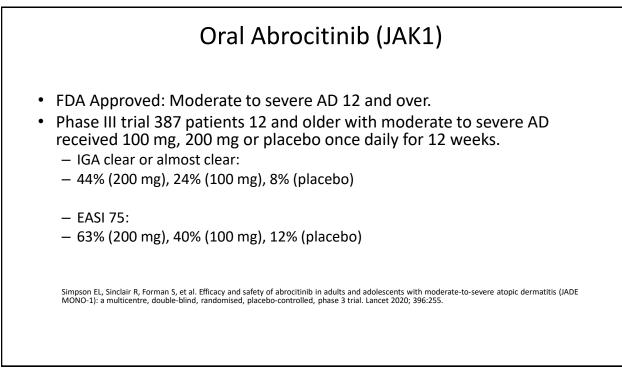

Non-pharmacologic controversies

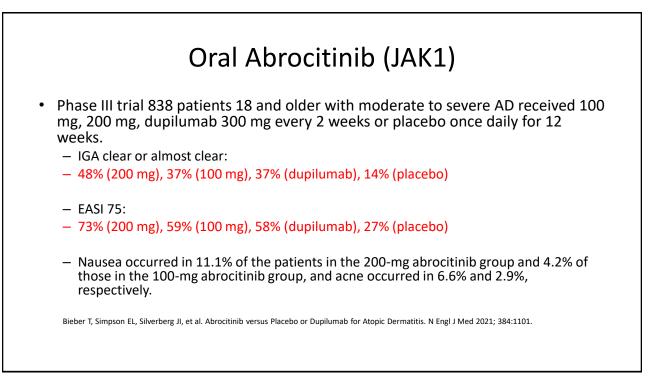
- Frequency of bathing:
 - Daily with immediate application of moisturizers while still damp.
- Bath additives (paraffin, oils, colloidal oatmeal, bleach):
 No.
- Wet wraps:

- For severe flares with other control measures in mind.

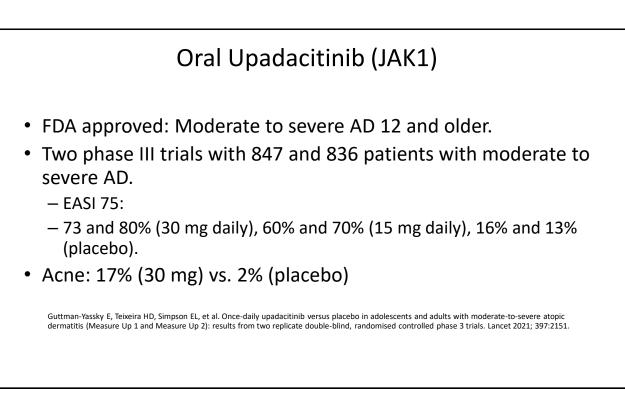


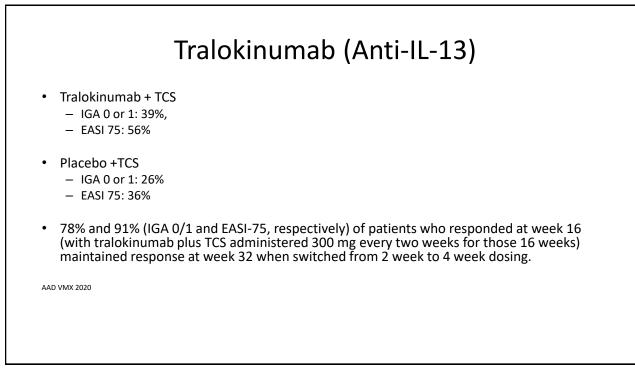





Current controller options

- Dupilumab
- Tralokinumab
- Oral abrocitinib
- Oral upadacitinib
- Oral steroids
- Methotrexate
- Cyclosporine
- Cellcept
- Phototherapy





Tralokinumab (Anti-IL-13)

- FDA Approved: Moderate to severe AD 18 and over.
- Dosing: 300 mg SC divided in 2 sites q2weeks.
 "May decrease to q4weeks after 16 weeks if clinical response achieved".
- Load: 600 mg SC divided in 4 sites x 1.
- Phase 3 moderate or severe AD in adults Monotherapy:
- IGA 0 or 1
 - 15 % vs. 7% placebo.
 - 22% vs. 11% placebo.
- EASI-75
 - 25% vs. 12% placebo.
 - 33% vs. 11% placebo.

Nemolizumab anti-IL-31 Against the receptor for IL-31 Associated with chronic skin inflammation and pruritus. Phase II, 12-week 264 adults with moderate to severe AD. Improvement from baseline in the score on the pruritus visual analogue scale: Decreased by: 44% (0.1 mg monthly), 60% (0.5 mg), 63% (2 mg), 21% (placebo). BSA of AD decreased by: 8% (0.1 mg), 20% (0.5 mg), 19% (2 mg), 16% (placebo).

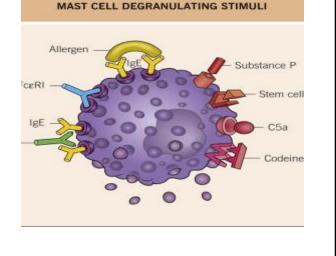
Nemolizumab anti-IL-31

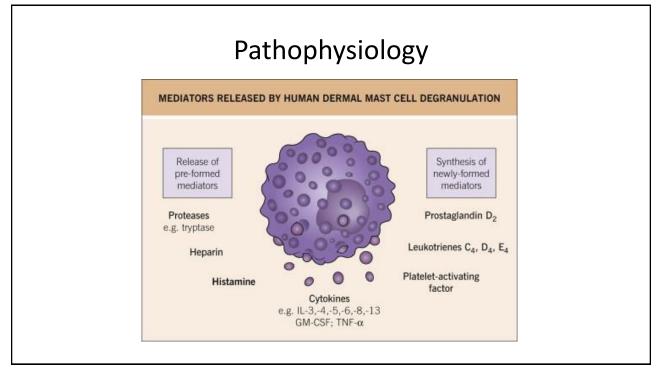
- Phase 3 clinical trial, evaluating the efficacy, safety, pharmacokinetics and immunogenicity of nemolizumab compared with placebo in adult patients with prurigo nodularis after a 16-week treatment period.
- 16 weeks: 38 % clear or almost clear skin lesions vs. 11% placebo.
- 56 % achieved 4 point itch reduction vs. 21% placebo.

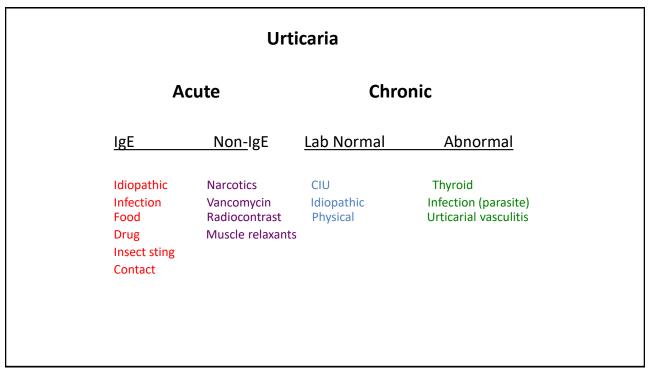
Lebrikizumab (Anti-IL-13) Binds soluble IL-13. Phase 2 trial: 280 adult patients with moderate to severe AD. Change in baseline EASI scores: - 125 mg every 4 weeks: -62%, _ 250 mg every 4 weeks -69% 250 mg every 2 weeks -72.1% Placebo-treated patients: 4.5% Common adverse effects in the lebrikizumab groups included upper respiratory tract infection, nasopharyngitis, headache, injection site pain, and fatigue. ٠ Phase 3: Monotherapy: "Lebrikizumab led to significant improvements with at least 75 percent skin clearance in more than half of people with moderate-to-severe atopic dermatitis (AD), as measured by EASI, in ADvocate 1 and ADvocate 2 Phase 3 clinical trials. Primary and all key secondary endpoints, including skin clearance and itch improvement, were met at Week 16." -August 2021. Guttman-YasskyE, Blauvelt A, Eichenfield LF, et al. Efficacy and Safety of Lebrikizumab, a High-Affinity Interleukin 13 Inhibitor, in Adults With Moderate to Severe Atopic Dermatitis: A Phase 2b Randomized Clinical Trial. JAMA Dermatol 2020; 156:411.

Drug	Company	Deliv ery	Approv ed	Age	Asthma	EASI-75	Safety	Head to Head	Other indicati ons
Dupilimab (Dupixent)	Regeneron Sanofi	SQ Q2wk Q4wk (peds)	2017	>6 months	Yes	69%	Conjunct -ivitis Facial redness		1. Asthma >6) 2. CRS w/ nasal polyps (>18) 3.EE (>12) 4. Prurigo Nodularis (>18)
Tralokinumab (Adbry)	Leo	SQ Q2wk	2022	>18	No	33%	Conjunct ivitis	No	None
Abrocitinib (Cibinqo)	Pfizer	Oral	2022	>12	No	73%	Black Box warning	73% v. 58% dupi	None
Upadacitinib (Rinvoq)	Abbvie	Oral	2022	>12	No	80%	Black Box warning	71% v. 61% dupi	1. RA 2. PsA 3. AS 4. UC
Baracitinib (Olumiant)	Lilly Incyte	Oral	?	>18	No	?	Black Box Warning	No	1. RA 2. AA
Lebrikizumab (?)	Almirall	SQ	?	>18	No	51%	?	No	None

Chronic Urticaria Pruritic, erythematous, blanching, circumscribed macular or raised lesions involving the superficial layers of the skin. May be present with wheals, angioedema or both. Individual wheals last < 24 hrs ("here today, gone tomorrow")

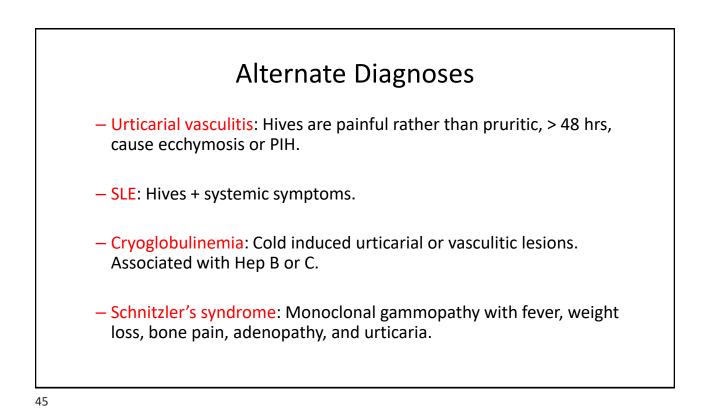

39

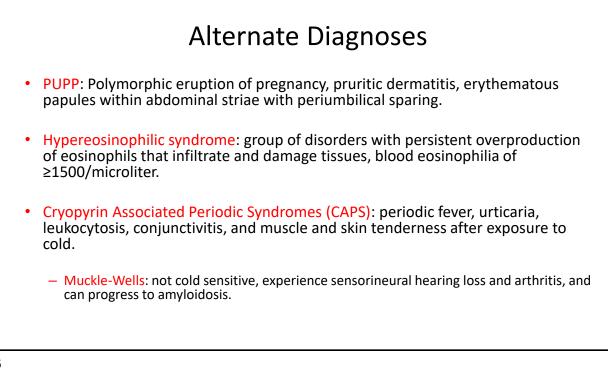

When To Consider Alternate Diagnoses

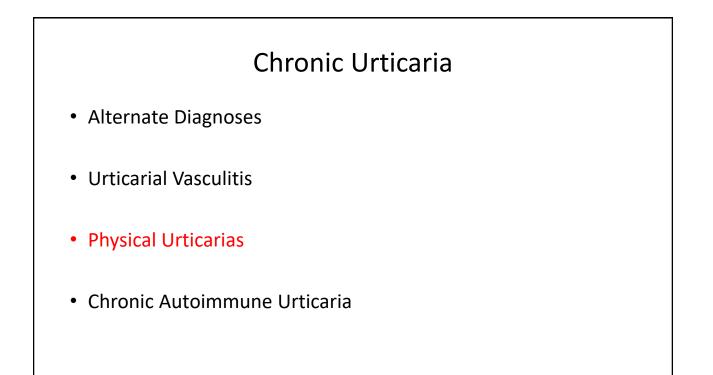

- Lack of pruritus.
- Individual lesions that last for days to weeks.
- Angioedema without urticaria.
- Lesions that are localized to only one area of the body or are very well defined.
- A review of systems suggestive of systemic disease.
- Failure to respond to therapy.

Pathophysiology

- Mast cell is primary effector cell.
- Two types of mast cells:
 MC_τ- skin
 - MC_{TC} respiratory tract
- Degranulation: Cross-linking of two or more adjacent FceRI.





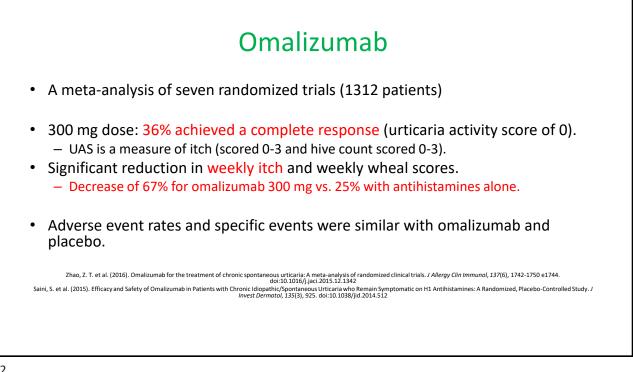

43

Causes of Acute Urticaria

- 50% Idiopathic
- 40% URI/Infections
- 9% Drugs
- 1% Food
- < 1% Other

- 1. Avoidance of triggers/physical factors if present
- 2. Standard dose 2nd generation antihistamines
- 3.
 - Add another 2nd generation antihistmaine
 - Add H2 antagonist.
 - Add leukotriene receptor antagonist
 - Add 1^{st} generation antihistamine at bedtime

AAAAI/ACAAI Guidelines


- 4. Dose advancement of 2nd generation anthistamine (2-4 times) standard dose.
- 5. Add alternative agent
 - Omalizumab
 - Cyclosporine
 - Other anti-inflammatory or immune suppressants.

EAACI/WAO Guidelines

- 1. Monotherapy with 2nd generation antihistamine.
- 2. Increase 2nd generation antihistamine up to 4 times normal.
- 3. Omalizumab plus 2nd generation antihistamine.
- 4. If not controlled after 6 weeks 2nd generation antihistamine plus cyclosporine.

Zuberbier, T. et al (2018). The EAACI/GA(2)LEN/EDF/WAO guideline for the definition, classification, diagnosis and management of urticaria. Allergy, 73(7), 1393-1414. doi:10.1111/all.13397

	Serota
1	. High dose 2 nd generation anthistamine, H2 antagonist Cetirizine 10-20 mg twice per day Famotidine 40 mg daily (used to use ranitidine 150 mg twice per day) Omalizumab handout to patient
2	. Assess after 1 month. Add omalizumab 300 mg qmonthly.
3	. Assess after 2 months. Consider Omalizumab q2 week dosing.
	. Assess after 2 months. If no improvement, make sure you have the diagnosis right. Then, consider least immune uppressing options (Dapsone or Sulfasalazine).
5	. Assess after 2 months. If no improvement consider cyclosporine.
	Once stable maintain therapy for at least 1 year and for at least 3 months of being symptom free before considering veaning.

Omalizumab Black Box Warning

WARNING: Anaphylaxis

Anaphylaxis presenting as bronchospasm, hypotension, syncope, urticaria, and/or angioedema of the throat or tongue has been reported to occur after administration of XOLAIR. Anaphylaxis has occurred as early as after the first dose of XOLAIR, but also has occurred beyond 1 year after beginning regularly administered treatment. Because of the risk of anaphylaxis, observe patients closely for an appropriate period of time after XOLAIR administration. Health care providers administering XOLAIR should be prepared to manage anaphylaxis that can be life-threatening. Inform patients of the signs and symptoms of anaphylaxis and instruct them to seek immediate medical care should symptoms occur.

53

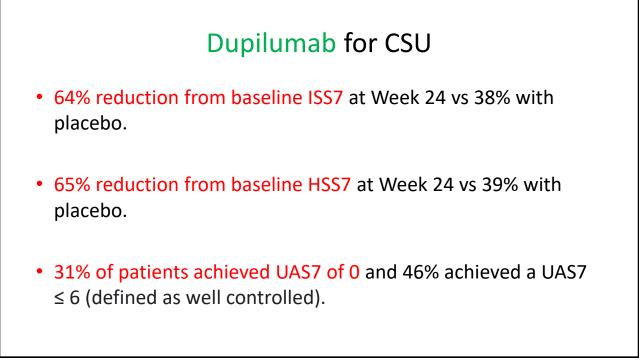
Omalizumab Black Box Warning

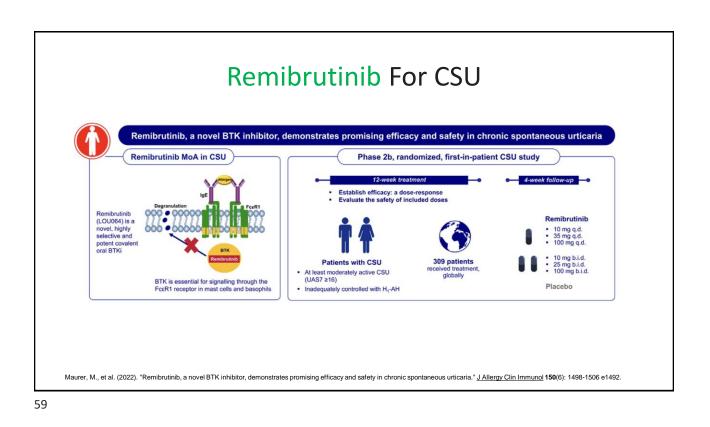
Anaphylaxis

Anaphylaxis has been reported to occur after administration of XOLAIR in asthma premarketing clinical trials and in postmarketing spontaneous reports. The frequency of anaphylaxis attributed to XOLAIR use was estimated to be 0.1% and at least 0.2% (based on an estimated exposure of about 57,300 patients from June 2003 through December 2006), respectively.

A case-control study showed that among XOLAIR users, patients with a history of anaphylaxis to foods, medications, or other causes were at increased risk of anaphylaxis associated with XOLAIR, compared to those with no prior history of anaphylaxis.

Omalizumab Black Box Warning
 Omalizumab Joint Task Force (AAAAI and ACAAI) Concluded that 35 patients had 41 episodes of anaphylaxis associated with Xolair (omalizumab) administration between June 1, 2003, and December 31, 2005. 39,510 patients receiving Xolair (omalizumab) Anaphylaxis-reporting rate of 0.09% of patients. 36 events for which the time of reaction was known


55


Serota Recommendations

- There have been no deaths from anaphylaxis due to omalizumab.
- Anaphylaxis rates for CIU are lower than for asthma patients.
- Prefilled syringe.
- Observe for 2 hours for first 3 injections and for 30 min thereafter.
- If patient is administering at home (after 3rd injection) make sure patient has epinephrine autoinjector and has nearby access to an ER in their community.

Dupilumab for CSU

- Two Phase 3 randomized, double-blind, placebo-controlled trials evaluating the efficacy and safety of Dupixent in two different patient populations with uncontrolled CSU.
- Study A evaluated Dupixent as an add-on therapy to standard-of-care H1 antihistamines compared to antihistamines alone in 138 patients with CSU aged 6 years and older who remained symptomatic despite antihistamine use and were not previously treated with omalizumab.
- Study B evaluated Dupixent in 108 patients with CSU aged 12 to 80 years who remained symptomatic despite standard-of-care treatment and were intolerant or incomplete responders to omalizumab.

Remibrutinib For CSU

- Bruton's tyrosine kinase (BTK), which is located downstream of the IgE receptor, is a cytoplasmic kinase expressed in selected immune cells such as mast cells, basophils, B cells, macrophages, and platelets.
- Cross-linking of FccRI promptly activates BTK in mast cells and basophils; studies have shown that the release of histamine and inflammatory cytokines by mast cells and basophils is reduced in BTK-null mice and patients with BTK deficiency.
- The high selectivity and tolerability of remibrutinib are likely attributable to its ability to bind to an inactive conformation of BTK. In a recent study involving healthy volunteers, remibrutinib was effective in inhibiting basophil activation.

Maurer, M., et al. (2022). "Remibrutinib, a novel BTK inhibitor, demonstrates promising efficacy and safety in chronic spontaneous urticaria." J Allergy Clin Immunol 150(6): 1498-1506 e1492.

Remibrutinib For CSU

- 311 patients were randomized.
- Reduced symptom score was observed for all remibrutinib doses from week 1 until week 12, with weekly Urticaria Activity Score change from baseline at week 4: -19.1 (10 mg once daily), -19.1 (35 mg once daily), -14.7 (100 mg once daily), -16.0 (10 mg twice daily), -20.0 (25 mg twice daily), -18.1 (100 mg twice daily), and -5.4 for placebo (nominal *P* < .0001 for all doses vs placebo).
- UAS7 of 0 in around 30% of patients.
- Most adverse events were mild or moderate, with no dosedependent pattern.

Maurer, M., et al. (2022). "Remibrutinib, a novel BTK inhibitor, demonstrates promising efficacy and safety in chronic spontaneous urticaria." J Allergy Clin Immunol 150(6): 1498-1506 e1492.

61

Re	emibr	utin	ib F	or C	SU			
AEs by PT (≥5% in any treatment group)								
Headache	1 (2.3)	7 (15.9)	4 (8.5)	3 (6.8)	6 (14.0)	5 (11.1)	26 (9.7)	6 (14.3
Headache	1 (2.3) 7 (15.9)	7 (15.9) 2 (4.5)	4 (8.5) 2 (4.3)	3 (6.8) 4 (9.1)	6 (14.0) 4 (9.3)	5 (11.1) 4 (8.9)	26 (9.7) 23 (8.6)	
	()		· /	· ,	. ,	. ,	· /	3 (7.1)
Headache Nasopharyngitis CSU	7 (15.9)	2 (4.5)	2 (4.3)	4 (9.1)	4 (9.3)	4 (8.9)	23 (8.6)	3 (7.1)
Headache Nasopharyngitis CSU Nausea	7 (15.9) 3 (6.8)	2 (4.5) 2 (4.5)	2 (4.3) 3 (6.4)	4 (9.1) 4 (9.1)	4 (9.3) 2 (4.7)	4 (8.9) 2 (4.4)	23 (8.6) 16 (6.0)	3 (7.1) 1 (2.4) 0
Headache Nasopharyngitis	7 (15.9) 3 (6.8) 2 (4.5)	2 (4.5) 2 (4.5) 3 (6.8)	2 (4.3) 3 (6.4) 1 (2.1)	4 (9.1) 4 (9.1) 1 (2.3)	4 (9.3) 2 (4.7) 1 (2.3)	4 (8.9) 2 (4.4) 2 (4.4)	23 (8.6) 16 (6.0) 10 (3.7)	3 (7.1) 1 (2.4)
Headache Nasopharyngitis CSU Nausea Upper respiratory tract infection	7 (15.9) 3 (6.8) 2 (4.5) 1 (2.3)	2 (4.5) 2 (4.5) 3 (6.8) 2 (4.5)	2 (4.3) 3 (6.4) 1 (2.1) 2 (4.3)	4 (9.1) 4 (9.1) 1 (2.3) 0	4 (9.3) 2 (4.7) 1 (2.3) 3 (7.0)	4 (8.9) 2 (4.4) 2 (4.4) 0	23 (8.6) 16 (6.0) 10 (3.7) 8 (3.0)	3 (7.1) 1 (2.4) 0 1 (2.4)

Maurer, M., et al. (2022). "Remibrutinib, a novel BTK inhibitor, demonstrates promising efficacy and safety in chronic spontaneous urticaria." J Allergy Clin Immunol 150(6): 1498-1506 e1492.

Top 5 Clinical Pearls

- 1. Address the barrier dysfunction and the immune dysregulation.
- 2. Excessive Th2 mediated inflammation is a systemic condition.
- 3. Ask what the movie looks like.
- 4. Assess comorbidities.
- 5. Treat with the least immune suppressing medication that considers efficacy, safety and comorbidities.

74th PAAA Annual Meeting

JUNE 23-25, 2023 The Hotel Hershey, Hershey, PA

Annual Business Meeting

Saturday, June 24, 2023 9:45 a.m. – 10:15 a.m.

Welcome to the Annual Business Meeting

Saturday, June 24, 2023 9:45 - 10:15 am

Bylaws Amendment Ballot Those eligible to vote received a ballot at registration.

Complete Ballot and return to ballot box at entrance by 10:00am

AGENDA

- I. Call to Order (Robert Zemble, MD)
- II. Approval of Minutes of June 25, 2022, Annual Business Meeting (Robert Zemble, MD)
- III. President's Report (Robert Zemble, MD)
- IV. Treasurer's Report (Hey Chong, MD)
- V. Membership Report (Janet Beausoleil, MD)
- VI. Nominating Committee Report & Elections (Sigrid DaVeiga, MD)
- VII. PAERF (Sarah Henrickson, MD)
- VIII. New/Old Business Bylaws Amendment Expansion of Training Membership (Robert Zemble, MD)
- IX. In Memoriam (Janet Beausoleil, MD)
- X. Recognition of Outgoing President and Remarks (Janet Beausoleil, MD and Robert Zemble, MD
- XI. Incoming President's Remarks (Janet Beausoleil, MD and Gisoo Ghaffari, MD)
- XII. Adjournment

APPROVAL OF THE MINUTES June 25, 2022

- Call to Order Dr. Sigrid DaVeiga, PAAA President, called the meeting to order at 9:45

 a.m. A quorum was present. She reviewed the eligibility requirements for those
 permitted to vote and explained the voting procedure to be followed for the
 proposed bylaws amendments and other matters.
- II. Approval of Minutes of June 26, 2021, Annual Business Meeting On a motion made and seconded, those present voted unanimously by acclamation to approve the minutes of the 2021 Annual Business Meeting.
- III. President's Report Dr. DaVeiga thanked everyone for coming to the annual meeting and annual business meeting, the first in-person meeting since the onset of the pandemic. Dr. DaVeiga expressed her appreciation and thanks to Planning Committee, and its chair Hey Chong, MD who could not be present for the meeting. Dr. DaVeiga congratulated the Planning Committee for the excellent educational program and speakers assembled for this year's meeting. She urged PAAA members to get actively involved in the work of the organization.

- IV. Treasurer's Report/Finance Committee Dr. Gisoo Ghaffari reported on the financial statement as of December 2021. She commented on PAAA's total assets and total liabilities. On a motion made and seconded, those present unanimously accepted the financial statement.
- V. Report of the Membership Committee Dr. Janet Beausoleil reported on the membership statistics. She reported that PAAA gained twenty new members since June 2021. The current membership stands at 168 dues-paying members and 64 emeritus or in-training members for a total membership of 232.
- VI. Report of the Nominating Committee Dr. Allyson Larkin presented the Nominating Committee slate and called for any nominations from the floor. Hearing none, on a motion made and seconded, those present voted unanimously by acclamation to accept the slate as presented.
- VII. PAERF Dr. Sarah Henrickson reviewed the PAERF financial report as of May 31, 2022, thanked those who donated to PAERF in the last year, recognized the 2022 \$10K PAERF Research Grant recipient Dr. Kim Nguyen, and 2021 PAERF \$10K grant recipient Dr. Stanislaw Gabryszewski and 2021 \$2500 mini-grant recipients grants Dr. Patrick Gleeson and Dr. Amandeep Sandhu . The 2022 PAERF poster presenters were also recognized.

5

- VIII. New/Old Business Amendment of the PAAA Bylaws. President Sigrid DaVeiga reviewed the proposed Bylaws amendment that sought to add a new standing committee devoted to Diversity, Equity, and Inclusion. Ballots were provided to those eligible to vote. The amendment passed with the support of more than twothirds of those present and eligible to vote.
- IX. Recognition of Long-Standing Attendees and In Memoriam PAAA Historian, Dr. Janet Beausoleil recognized fellow 2022 long standing attendee Robert Rabinowitz, DO, and remembered two PAAA stalwarts who passed in 2022, Drs. Fireman and Israel.
- X. Recognition of Out Going President PAAA Historian Dr. Janet Beausoleil presented Dr. Sigrid DaVeiga with the PAAA President's Award in recognition of her outstanding leadership and tenure as PAAA president. Dr. DaVeiga thanked the Board of Regents for their support and hard work and passed the mantle of leadership to Dr. Robert Zemble.
- XI. Remarks of Incoming President Dr. Zemble thanked Dr. DaVeiga for her leadership and remarked that he looks forward to working with the Board of Regents in the coming year to continue to strengthen PAAA and the great job it does supporting its members and their patients with education, advocacy, and shared experience.

There being no further business, the meeting adjourned at 10:20/a.m.

PRESIDENT'S REPORT

Robert Zemble, MD

TREASURER'S REPORT

Hey Chong, MD, PhD

TREASURER'S REPORT

Pennsylvania Allergy and Asthma Association Statement of Financial Position

December 31, 2022

ASSETS Cash - Checking Cash Management - Fulton Long Term Investment Total Cash Accounts Receivable Prepaid Expenses	YEAR TO DATE \$300.00 39,128.17 427,225.75 466,653.92 0.00 5,890.50	PRIOR YEAR TO DATE \$0.00 70,046.56 497,440.92 567,487.48 150.00 0.00
TOTAL ASSETS	472,544.42	567,637.48
LIABILITIES AND NET ASSETS Accounts Payable - General Accounts Payable - PAMED Unearned Revenue Total Liabilities	\$1,768.05 6.890.07 6.750.00 15,408.12	2,291.90 6,561.38 48,950.00 57,803.28
Net Assets, January 1 Change in Net Assets	509,834.20 (52,697.90)	469,949.14 39,885.06
Net Assets, Year to Date	457,136.30	509,834.20
TOTAL LIAB AND NET ASSETS	472,544.42	567,637.48

Prepared by the Foundation of the PA Medical Society

MEMBERSHIP COMMITTEE REPORT

Current Men	Current Membership		
Active	155		
Associate	1		
Corresponding	7		
Emeritus	50		
In-training	18		
Total Members	231		

New Members Since June 2022

Active

Antonella Cianferoni, MD Warden Hwan, MD Anar Dossumbekova, MD, PhD Scott Feldman, MD, PhD Rehan Mujahid, DO **Corresponding** Ramin Beheshti, MD

In Training

Jennifer Anne Brennan, DO Timothy Buckey, MD, MBE Sheryl Mathew, MD Catherine Murray, MD Isma Shah, MD Colleen Shannon, MD, MPH Nicole Wolfset Justyna Zybaczynska

11

NOMINATING COMMITTEE REPORT

Sigrid DaVeiga, MD

NOMINATING COMMITTEE REPORT

2023-2024 Board of Regents Nominees Officers

Name	Position
Hey Chong, MD Pittsburgh, PA	President-Elect
Magee DeFelice, MD Philadelphia	Secretary/Treasurer
PenneyAranta Allergy & Attimus Acescanson	

13

NOMINATING COMMITTEE REPORT

2023-2024 Board of Regents Nominees Members At- Large

NOMINATING COMMITTEE REPORT

PAERF REPORT

Sarah Henrickson, MD, PhD

PAERF Financial Report as of May 31, 2022

Pennsylvania Allergy Education and Research Fund Statement of Financial Position May 31, 2023

ASSETS: Cash Management - General Long-term Investments, at Market Total, Cash and Investments Accounts Receivable Prepaid Expenses	12,398.13 127,084.68	139,482.81 0.00 0.00	
TOTAL, ASSETS 139,482.81			
LIABILITIES AND NET ASSETS:			
Accounts Payable - General	0.00		
Unearned Revenue	0.00		
Total, Liabilities		0.00	
Net Assets, January 1, 2023	129,369.12		
Change in Net Assets Net Assets, May 31, 2023	10,113.69	139,482,81	

Prepared by the Foundation of the PA Medical Society

PAERF DONORS

Platinum

Corinna S. Bowser, MD Kara E. Coffey, MD Magee L. DeFelice, MD Denise A. Diprimio-Kalman, DO Mary E. Fontana-Penn, MD Eugene A. Gatti, MD Todd D. Green, MD Alana Jones, DO Kristen M. Lutzkanin, MD Tracy R. Prematta, MD Anthony R. Rooklin, MD Melanie A. Ruffner, MD, PhD Jonathan M. Spergel, MD

Gold

Faoud T. Ishmael, MD Robert E. Coifman, MD Sandra M. Gawchik, DO Hillary B. Gordon, MD Richard L. Green, MD Archana Mehta MD Rajendra Singh, MD

Thank you PAERF Donors!

18

PAERF DONORS

Bronze

Sigrid P. DaVeiga, MD

Tom J. Ferro, MD

Karin Flynn-Rodden, MD

Donald Harper, MD

David L. Miller, MD Michael J. Palumbo, MD

Matthew Straesser, MD

Silver

Janet L Beausoleil, MD Hey J. Chong, MD Megan Ford, MD Gisoo Ghaffari, MD Sarah E. Henrickson, MD Sharon Hwang MD Junfang Jiao, MD Pooja B. Jhaveri, MD Katie L. Kennedy, MD Christine Malloy, MD Gregory V. Marcotte, MD Sam Patel, RPH, MBA Mark Posner, MD Robert P. Rabinowitz, DO Thekkemadom P. Ramakrishnan, MD Steven D. Smith, MD Robert M. Zemble, MD

PAAA

19

Thank you PAERF Donors!

2023 & 2022 PAERF RESEARCH GRANT RECIPIENTS

2023 Grant Recipient

\$7,500 grant to Dr. Timothy Buckey - Food Allergy Health Equity: An Assessment of Prevalence and Outcomes in a Pediatric Food Challenge Center Based on Patients' Demographics

2022 Grant Recipient

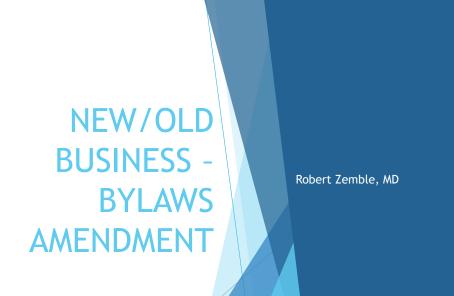
 \$10,000 grant to Dr. Kim Nguyen - Impact of anaphylaxis plans in multiple languages in an outpatient pediatric allergy clinic setting

2023 PAERF POSTERS

Jennifer Brennan, DO Timothy Buckey, MD, MBE Stanislaw Gabryszewski, MD, PhD Hannah Harrison, MD Lauren Kaminsky, MD, PhD Sheryl Mathew, MD Sunjay Modi, MD Catherine Murray, MD, Kim Nguyen, MD Matthew Norris, MD Marvi Rizwan, MD Isma Shah, MD Nicole Wolfset, MD

21

2023 PAERF TRAVEL STIPEND RECIPIENTS


Nemours Children's Hospital Sidney Kimmel Medical College at Thomas Jefferson University

> Hannah Harrison, MD Isma Shah, MD

University of Pennsylvania

Timothy Buckey, MD Sheryl Mathew, MD Marvi Rizwan, MD

NEW/OLD BUSINESS

Pursuant to the 30-day notice requirement of the Pennsylvania Allergy and Asthma Association Bylaws Article VIII – Amendment of Bylaws, below please find a proposed amendment to Article II – Members, Section 1. d. <u>Training</u>

The amendment seeks to expand the existing Training Membership category by amending Article I – Members, Section 1. d. <u>Training</u> to include residents and medical students, to afford residents and medical students the same rights, benefits, and privileges available to fellows, and to provide for an abbreviated membership application process to facilitate "automatic" membership in PAAA.

ARTICLE II - MEMBERS

Section 1. The membership of this Association shall consist of the following classes:

d. <u>Training</u> - a physician (MD or DO) or medical student enrolled in a recognized regional fellowship program in allergy and immunology, medical residency program or medical school is eligible for a training membership. This class of membership shall continue until the end of the calendar year in which the fellowship, residency, or medical school training ends. A training member may serve on a committee (but not as chair), but may not vote, or hold elective office. Training members are not responsible for dues or assessments. Elevation from training to active membership requires notification of successful completion of the two-year fellowship. Training members will complete an abbreviated membership application process established by the Membership Committee.

IN MEMORIAM

Dr. Richard J. Greene

25

RECOGNITION OF OUTGOING PRESIDENT AND REMARKS

Janet Beausoleil, MD Robert Zemble, MD

Save the Date!

74th PAAA Annual Meeting

JUNE 23-25, 2023 The Hotel Hershey, Hershey, PA

Approach to the Allergy Patient with Hypereosinophilia

Presented by: Amy Klion, MD

Saturday, June 24, 2023 10:45 a.m. – 11:30 a.m. National Institute of Allergy and Infectious Diseases

Laboratory of Parasitic Diseases

Approach to the Allergy Patient with Hypereosinophilia

Amy Klion, MD Laboratory of Parasitic Diseases June 24. 2023

Disclosures

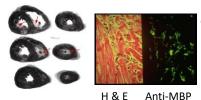
- No conflicts of interest
- None of the drugs that I will discuss are approved for HES except for imatinib and mepolizumab

Learning Objectives

Review controversies in the definition and classification of HES

Describe the heterogeneity of clinical presentations of hypereosinophilia

Discuss the approach to targeted therapy of hypereosinophilic syndromes


Evolution of the definition of HES

Case Reports

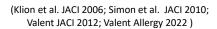
FIBROPLASTIC ENDOCARDITIS WITH EOSINOPHILIA (LÖFFLER'S ENDOCARDITIS PARIETALIS FIBRO-PLASTICA): CASE REPORT AND REVIEW OF LITERATURE *

By F. G. HOFFMAN, Lt. Colonel, USAF (M.C.), Waterloo, N. Y., DAVII ROSENBAUM, M.D., and P. D. GENOVESE, M.D., Indianapolis, Indiana

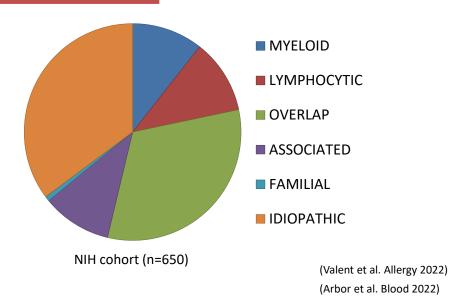
18 1396 Lotter published a report of two patients with a interfor uncasanted type of endocarditis.¹⁶ This entity, subsequently referred to as fibroplastic endocarditis or Loffler's endocarditis parietalis fibroplastica, is characterized by an afebrile course, progressive, refractory congestive failure and a striking cosinophilia. The cases reported by Loffler, in addition, exhibited signs of mitral valvulities, though these reinadewates that account for the clinical petture.

(Hoffman, Rosenbaum and Genovese 1955 Ann Intern Med)

Case Series


- Blood eosinophilia ≥1.5 x 10⁹/L for longer than 6 months (or death before 6 months associated with signs and symptoms of HES)
- Lack of evidence for parasitic or other known causes of eosinophilia
- Presumptive signs of organ involvement , such as heart failure, gastrointestinal dysfunction, central nervous system abnormalities, fever or weight loss

(Chusid, Dale, West and Wolff 1975 Medicine (Baltimore)

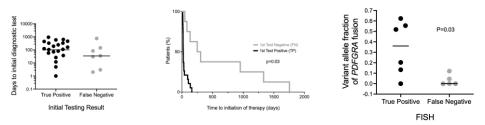

Consensus Definition

- Blood eosinophilia ≥1.5 x 10⁹/L on at least two occasions or evidence of prominent tissue eosinophilia associated with marked blood eosinophilia
- Evidence of end organ damage attributable to eosinophilia

HES clinical subtypes

Myeloid HES

- PDGFRA-positive MN (>80%)
- Other mutation-positive MN*
- CEL-NOS
- Idiopathic HES with myeloid features

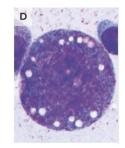

PDGFRA-positive MN

- Male gender
- Anemia and/or thrombocytopenia
- Dysplastic eosinophils and myeloid precursors in periphery
- Splenomegaly
- Hypercellular marrow
- Increased serum B12 and/or tryptase levels
- 30% mortality at 3 years

*Marked eosinophilia occurs in a variety of myeloid neoplasms and myeloproliferative disorders, including those associated with *PDGFRB*, *FGFR1*, *KIT*, and *JAK2*

"Idiopathic" myeloid HES update

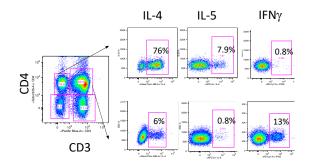
 FISH is relatively insensitive for the detection of FIP1L1::PDGFRA compared to PCR


(Pongdee Acta Haem 2022)

- The number of new recurrent mutations associated with HES identified by NGS continues to increase (i.e., STAT5b N642H – Cross Leukemia 2019, JAK2 exon 13 – Patel Blood 2019)
- These are often not part of standard NGS panels.

Germline mutations and myeloid HES

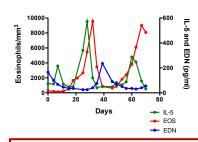
- 74 year old man with history of macrocytic anemia since childhood, episcleritis, and relapsing polychondritis presents with hypereosinophilia (AEC 1659/μL), pruritic rash, transfusion-dependent anemia and elevated serum tryptase (29 pg/mL)
- Bone marrow: normocellular with trilineage hematopoiesis, eosinophilia, no obvious increase in mast cells or fibrosis; cytogenetic and initial molecular studies unrevealing
- Diagnosis?


VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome

UBA1 Met41Thr; VAF 58% (Beck et al. NEJM 2020)

Lymphocytic variant HES

- Associated with populations of phenotypically aberrant or clonal T cells secreting eosinophilopoetic cytokines
- Equally common in men and women
- Predominance of skin manifestations
- Associated with elevated serum IgE, TARC levels
- May progress to lymphoma in up to 30%


Rare LHES variants

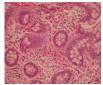
36 year old man with recurrent episodes of bilateral hand and foot swelling x 3 months

Gleich's syndrome

(Katzen Am J Dis Child 1986)

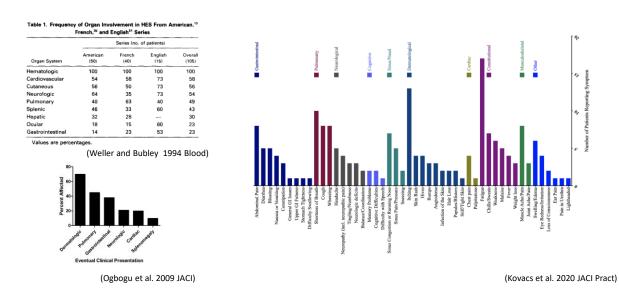
Additional features

- CD3-CD4+ clonal T cell population
- Elevated IgM
- Multilineage involvement

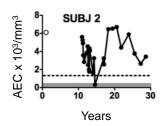

(Khoury et al. Haematologica 2015)

Vascular aneurysm

Asthma

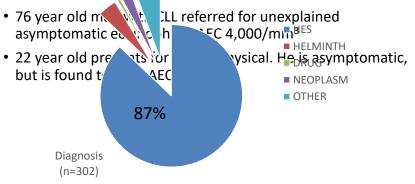

Overlap HES

- Single organ eosinophilic disorders that overlap in presentation with idiopathic HES and may be associated with marked peripheral eosinophilia
- Examples include EGID, eGPA, chronic eosinophilic pneumonia, atopic dermatitis
- Important to recognize since the therapeutic approach may be different


11

Clinical manifestations of HES are extremely heterogeneous and do not reliably distinguish between clinical subtypes

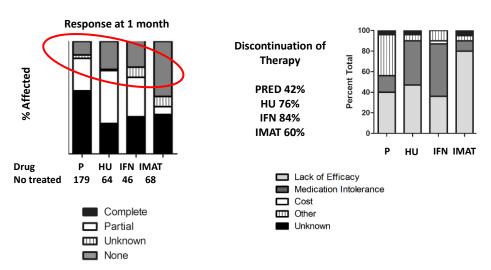
Hypereosinophilia in the absence of clinical manifestations


- Sporadic HEus
 - Defined by AEC ≥1.5 x 10⁹/L without clinical manifestations off therapy for 2-5 years
 - May be associated with clonal/aberrant lymphocyte population and rarely, mutations consistent with myeloid neoplasm
 - Rarely progresses to overt HES (Chen et al. 2013; Helbig et al. 2014)
- · Familial eosinophilia
 - Autosomal dominant eosinophilia associated with dysregulation of IL-5 transcription and lack of clinical manifestations (Klion et al 2004; Babu et al. 2017)
 - Recent identification of a single nucleotide variant that creates an aberrant transcription start site (2022 ASH oral presentation 583)

	1		 1147.0	
and the second second				A 1
water of the		 	 	1
NUCLER	· ·		• • • • •	1

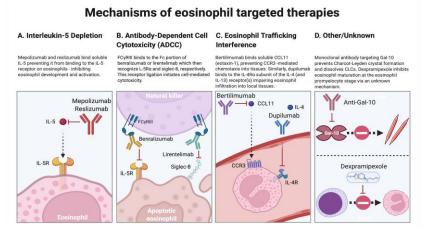
and the second		A	 	
100.001	1.0		 	
and the second		 A days	 	1
MILLION A		 A Long		
****		 4	 	
	0	 	 	
				- hear

Secondary causes of eosinophilia can mimic idiopathic HES

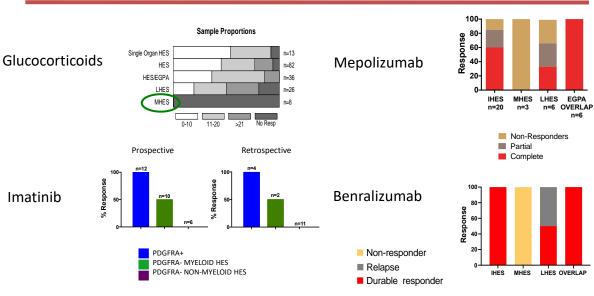

 50 year old Iraqi rug salesman with pruritus and erythematous total body rash, AF²0,000/mm³

Approach to Treatment

- Potentially life-threatening?
- Secondary treatable cause?
- Most likely clinical subtype?


Conventional therapy for HES is unsatisfactory

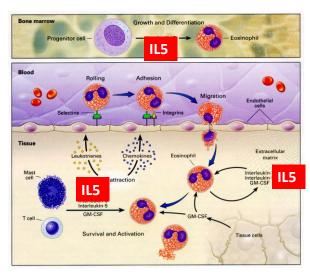
(Ogbogu et al. JACI 2009)


Eosinophil-targeted therapies

- The number of therapies that target eosinophil directly and/or indirectly is increasing exponentially
- Mepolizumab is the only eosinophil-targeted therapy FDA-approved for the treatment of all HES
- Efficacy and safety concerns may be different across the different clinical subtypes and overlap conditions

(Constantine and Klion, Faculty Rev 2022)

17

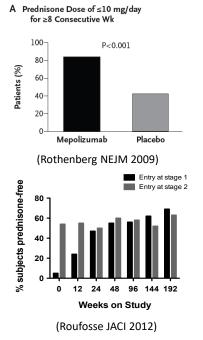

Clinical subtype predicts treatment responses In HES

(Khoury JACI Pract 2017 and Allergy 2016; Kuang JACI:P 2018 and NEJM 2019)

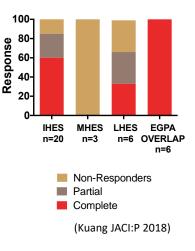
Case 1

- 54 year old woman presented with an 8 year history of marked eosinophilia , sinusitis, nasal polyps, urticaria, dermatitis and dyspnea and an AEC of 23400/ μ L
- Evaluation revealed no evidence of myeloid or lymphocytic variant HES and endomyocardial fibrosis with severe mitral regurgitation
- She underwent valve replacement and tricuspid repair and was treated with prednisone without response
- Eosinophil count remained elevated (33700/ μ L) and she developed severe prosthetic valve stenosis requiring a second valve surgery
- She was treated with conventional therapy (high dose steroids, hydroxyurea, cyclophosphamide, interferon), and FDA-approved targeted therapy (mepolizumab) without response.

19

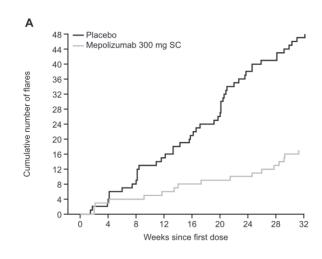


IL-5 plays a crucial role in all stages of the eosinophil life cycle


(from Rothenberg 1998 NEJM)

1-2% of peripheral blood leukocytes; $t_{1/2}$ in blood = 18 hours

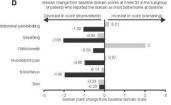
IL5 receptor α is found only on eosinophils, basophils and mast cells Mepolizumab (750 mg iv) is safe and effective therapy for PDGFRAnegative HES



Compassionate use analysis

21

Mepolizumab (300 mg sc) prevents flares in steroid-responsive HES

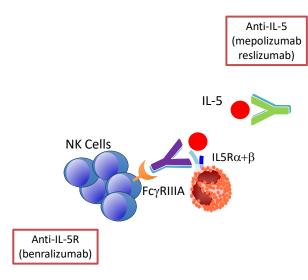


This study led to FDA approval for mepolizumab for HES

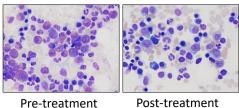
(Roufosse et al. JACI 2020)

Mepolizumab – additional information

- Mepolizumab been in use for more than 20 years with excellent safety profile
- Also approved for asthma, eGPA and chronic sinus disease with polyps
- Clinical trials did not show efficacy in reducing symptoms in eosinophilic esophagitis
- In the phase 3 trial, skin symptoms were relatively resistant based on the most bothersome symptom analysis at 32 weeks (Roufosse Frontiers Med 2023)

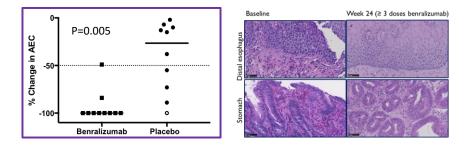


- May be less effective in steroid-resistant HES, especially lymphocytic variant
- Depemokimab (long-acting anti-IL5; GSK3511294) is currently in clinical trials


Case 1

- She was referred to the NIH on interferon, mepolizumab and pulsed iv cyclophosphamide with AEC 4920/ μ L, ground glass pulmonary infiltrates and severe restrictive pulmonary disease
- Mepolizumab and interferon were discontinued and she was subsequently enrolled on a phase 2 placebo-controlled trial of benralizumab for treatment-refractory HES.
- At week 13, her AEC was $0/\mu L$ and cyclophosphamide was discontinued.
- She has remained clinically well without progression of cardiac disease with AEC 0/μL for >7 years.

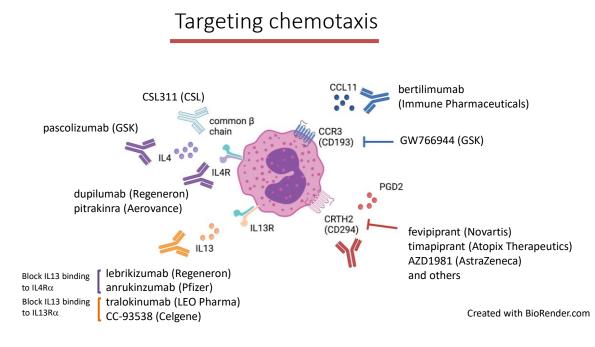
Key differences between anti-IL-5 and anti-IL-5R antibodies


Mechanism of action Effect on eosinophil precursors Degree of tissue depletion

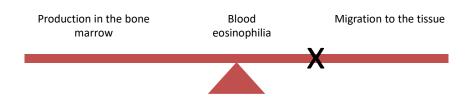
Pre-treatment

(Kuang et al. NEJM 2019)

Benralizumab was well-tolerated and effective in depleting eosinophils in HES



- The primary study endpoint was met (proportion of subjects with >50% decrease in AEC • at 12 weeks)
- At week 13, AEC was <50/mm3 in 17/19 evaluable subjects
- At week 52, AEC remained suppressed in 14 subjects despite reduction or discontinuation of background therapy
- At 5-8 years, 10 of the initial 19 participants remain on benralizumab •


(Kuang et al. NEJM 2019; unpublished data)

Targeting IL-5/IL-5R in HES: next steps

- How does dosing affect response in HES?
 - Mepolizumab: 100 sc vs 300 sc vs 700 iv
 - Mepolizumab fixed dose vs. reslizumab weight-based
 - Benralizumab q4 week vs. q 8 week
- Which biologic for which patient?
- Safety and efficacy of multiple biologics
- Novel formulations
 - depemokimab (long-acting anti-IL5; GSK3511294)

Pros and cons of targeting chemotaxis in HES

- Clinical trials have demonstrated significant reduction in tissue eosinophilia and symptoms in a variety of eosinophil-associated disorders (excluding HES)
- Most, <u>but not all</u>, of the clinical manifestations of HES are related to eosinophilic inflammation in the tissues
- Although peripheral eosinophilia has been described with most of the therapeutics targeting the IL4/13 axis, this has been transient and asymptomatic in most, <u>but not</u> <u>all</u>, cases

29

Dupilumab

- Monoclonal antibody to the IL4 receptor that blocks IL-4 and IL13 signaling
 - IL-4 and IL-13 are important in driving eotaxin-mediated trafficking of eosinophils to inflamed tissue
 - IL-13 is an important mediator of fibrosis
- Approved for asthma but not eGPA, atopic dermatitis, chronic rhinosinusitis with nasal polyps and eosinophilic esophagitis
- Most effective of the biologics for the treatment of CRSwNP (Cai et al. JACI Pract 2022) and only biologic approved for EoE (Dellon et al. NEJM 2022)
- Associated with transient increased blood eosinophil count with cases of eosinophilic complications, including eGPA, reported

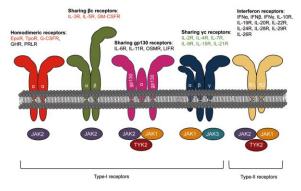
Dupilumab is effective in reducing symptoms and improving histology in EoE

Symptomatic improvement

C Change from Baseline in DSQ Score in the Part A–C Group in Part C on at Wk 24 in Parts A in the Part A-C Group Wk 52 in 90-80-70-60-50-40-30-70-60-50-40-30-Mean Change -10 -15 -20 -25 30 32 28 Part & Wk 2/ No. of Patients 39 42 2 (5) 25 (60) 37 28 28 30 32 28 29 26 26 27 25 29 28 26 23 40 34 32 32 34 38 38 33 34 36 33 32 27 29 37 40

(Dellon et al. NEJM 2022)

Histologic remission

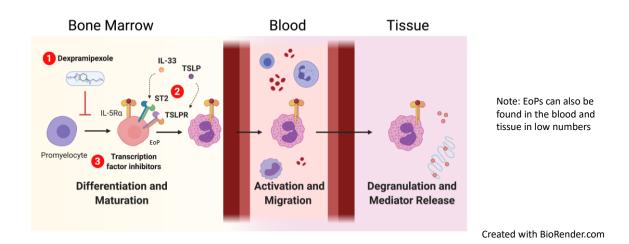


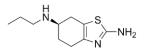
- 58 year old man with a lifelong history of allergic rhinitis, mild asthma and severe eczema complicated by recurrent cellulitis and Staphylococcal bacteremia in 2015. AEC was 500/µL in May 2017 off all therapy.
- He was started on dupilumab 300 mg every 2 weeks in 2018 due to worsening pruritus despite prednisone, methotrexate and topical therapies. AEC was 2,320/µL in February 2020 on dupilumab monotherapy.
- The dupilumab dose was increased to 600 mg every 2 weeks in April 2020 due to persistent symptoms.
- In early 2021, he was admitted to the hospital for severe pruritus, diarrhea and weight loss. AEC was 12,930/µL. Dupilumab was discontinued and his eosinophil count gradually decreased to 3,190/µL by the end of the month.

Other agents targeting eosinophils

Ruxolitinib (InCyte)

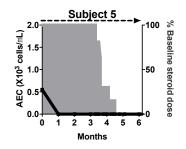
- Reversible inhibitor of JAK1/2
- FDA-approved for the treatment of polycythemia vera and myelofibrosis
- Adverse events occur in 25-35% of patients and include cytopenias, reactivation of viral infection and TB, and secondary malignancy
- Two small studies in lymphocytic variant HES showed promising results; anecdotal data in JAK/STAT mutationpositive HES


(Vainchenker F1000 Res 2018)


- Prior to being seen at NIH, the patient restarted dupilumab with return of eosinophilia and development of an eosinophilic pleural effusion (34% eos).
- Prednisone 20 mg daily was started with resolution of the pleural effusion and improvement in his asthma but persistent pruritus.
- He was enrolled on an open label phase 2 clinical trial of ruxolitinib 15 mg po bid for steroid-refractory HES.
- Within 1 day his pruritus had improved. He recently returned for 12 week followup feeling "better than I have felt in years". His skin is markedly improved, his AEC has normalized, and a steroid taper has been initiated.
- To date, 17 of 20 patients have been enrolled on study and results are encouraging.

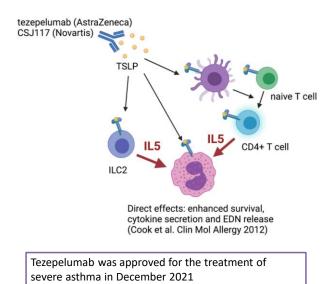
Other agents - targeting eosinophil development

Dexpramipexole, anti-IL33/ST2/TSLPR antibodies, transcription factor inhibitors



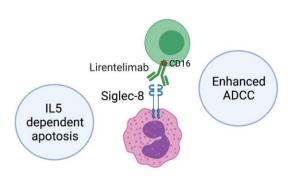
35

Dexpramipexole


- A small molecule enantiomer of an <u>oral</u> drug used to treat Parkinson's disease that was found to be neuroprotective in *in vitro* assays (Knopp Biosciences LLC)
- Target: unknown
- Failed to meet primary endpoint in phase 3 trial in ALS but was incidentally noted to dramatically reduce peripheral eosinophil counts
- Met dual steroid-sparing primary endpoints in pilot open-label phase 2 trial in HES (Panch et al. Blood 2018)
- Recently shown to deplete eosinophils and improve FEV1 in a phase 2 randomized placebo-controlled trial in moderate to severe asthma (Prussin et al. ATS 2021)
- · Currently in phase 3 trials in severe asthma

35 year old woman with HES/EGPA overlap on 15 mg prednisone equivalent with lung, GI, skin and sinus involvement.

TSLP as a therapeutic target

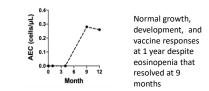


Tezepelumab has been shown to significantly decrease peripheral blood eosinophils (Corren 2017 NEJM, Menzies-Gow NEJM 2021) and, in the one study where this was assessed, decrease tissue eosinophilia and blunt the eosinophilic response to allergen challenge in the lungs (Diver et al. Lancet Respir Med 2021)

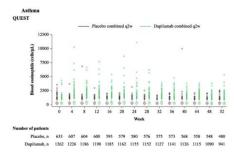
Created with BioRender.com

Other agents - targeting eosinophil receptors

Lirentelimab (Allakos)



- A placebo-controlled phase 2 study of lirentelimab for the treatment of eosinophilic gastritis and duodenitis depleted tissue eosinophils by 86% and reduced symptom scores by 53% (compared to 24% in the placebo group; p<0.001) (Dellon et al. NEJM 2020)
- Adverse events were comparable between the two groups with the exception of mildmoderate infusion reactions, which were more common in patients who received lirentelimab
- A phase 3 trial in eosinophilic gastritis and duodenitis did not meet the primary endpoint.


What about safety?

- Eosinophil depletion has not been associated with any major safety signals to date
- Interference with eosinophil trafficking is associated with transient peripheral eosinophilia and rarely, with eosinophilic complications
- Targeting multiple pathways and/or lineages with dual biologics may lead to unanticipated consequences

Healthy baby born to a mother on benralizumab

(Manetz et al. JACI:Pract 2020)

(Wechsler et al. JACI Pract 2022)

39

Factors to consider when choosing a therapy for HES

- Clinical HES subtype and pattern of clinical involvement
- Concomitant conditions (chronic sinus disease, asthma,.....)
- Drug route (iv vs. sc), administration (doctor vs. patient) and frequency
- Potential side effects
- Insurance

• Role of serum IL-5 levels is controversial

How to choose?

Mepolizumab

- Approved for severe asthma, HES and eGPA
- The 100 mg dose approved for asthma is insufficient for many patients with eGPA and HES (Chen et al. JACI 2022)
- Recently approved for CRSwNP (9% still required surgery and 25% OCS within 52 weeks)

Dupilumab

- Approved for asthma, atopic dermatitis, EoE, polyps but not HES or eGPA
- Associated with transient increased blood eosinophil count with cases of eosinophilic complications, including eGPA, reported
- Most effective of biologics for the treatment of CRSwNP (Cai et al. JACI Pract 2022)

Role for dual biologics?

41

Conclusions

- Because HES is a heterogeneous disorder with a wide range of etiologies that overlap in clinical presentation but differ in response to therapy and prognosis, an inclusive approach to diagnosis is warranted.
- Although eosinophil-targeted therapies offer the promise of less toxic, more effective treatment for HES, there are many unresolved questions regarding efficacy and long-term safety.

Thank you for your attention!

Past Members of the Human Eosinophil Section Fei Li Kuang Princess Ogbogu Nick Kovacs Senbagavalli Babu

Too numerous to list collaborators Irina Maric Cindy Dunbar Sandhya Panch AstraZeneca GlaxoSmithKline Knopp/Areteia

Clinical Parasitology Group Thomas Brown Nicole Holland Lauren Thumm Perla Adames Castillo Lauren Wetzler JeanAnne Ware Celeste Nelson

Our patients

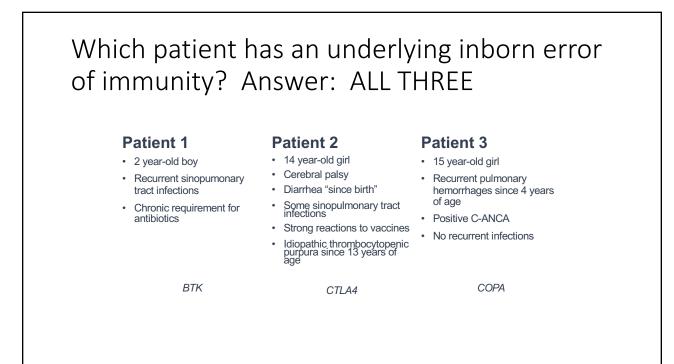
74th PAAA Annual Meeting

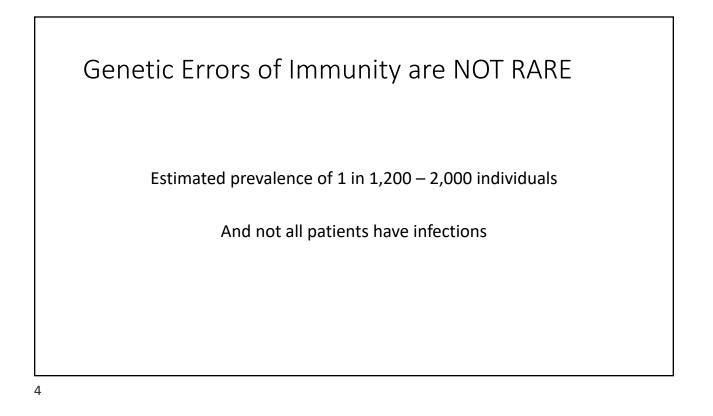
JUNE 23-25, 2023 The Hotel Hershey, Hershey, PA

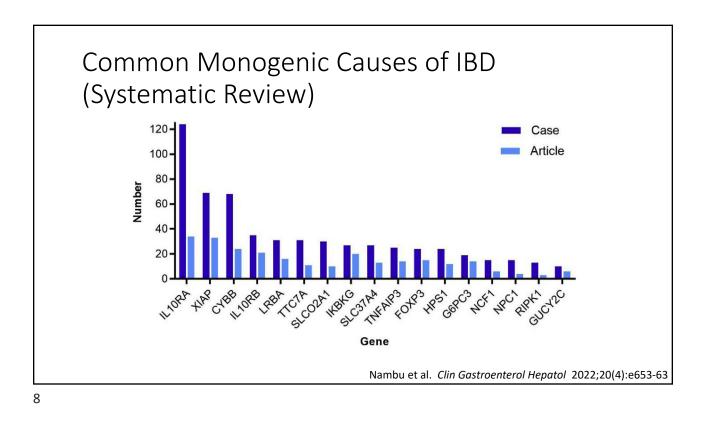
Noninfectious Manifestations of Inborn Errors of Immunity

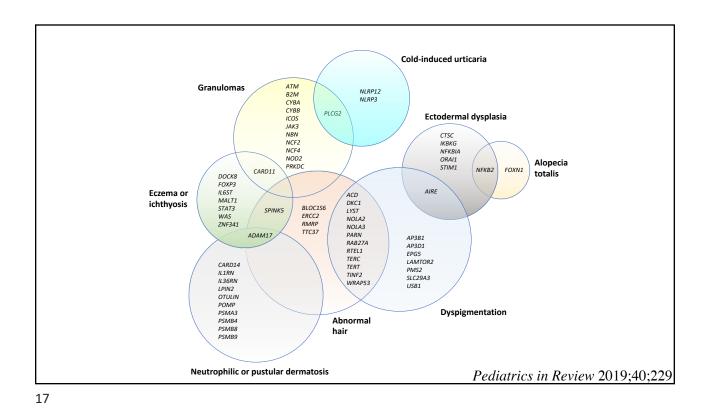
Presented by: Ivan Chinn, MD

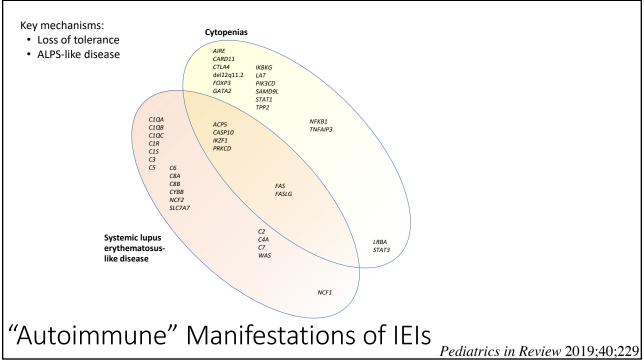
Saturday, June 24, 2023 11:30 a.m. – 12:15 p.m.

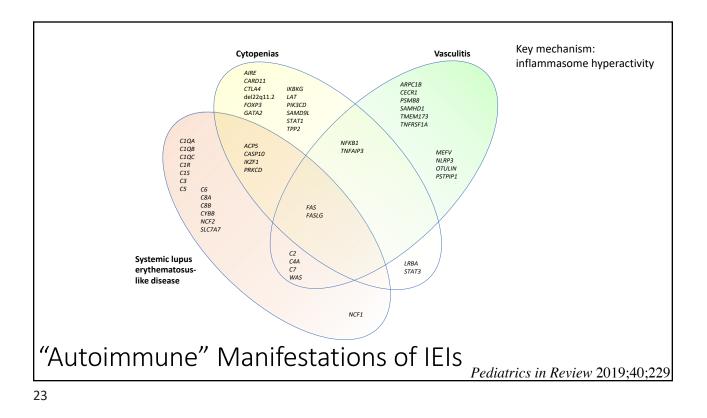

Noninfectious Manifestations of Inborn Errors of Immunity

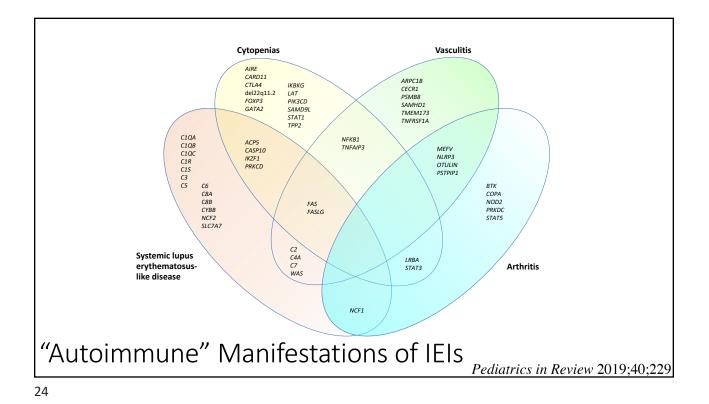

Ivan Chinn, M.D.

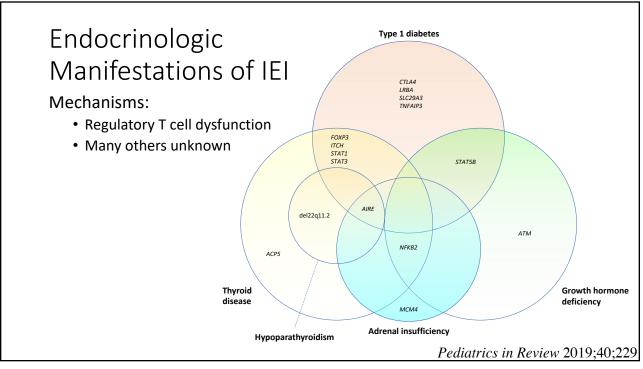

June 25, 2023

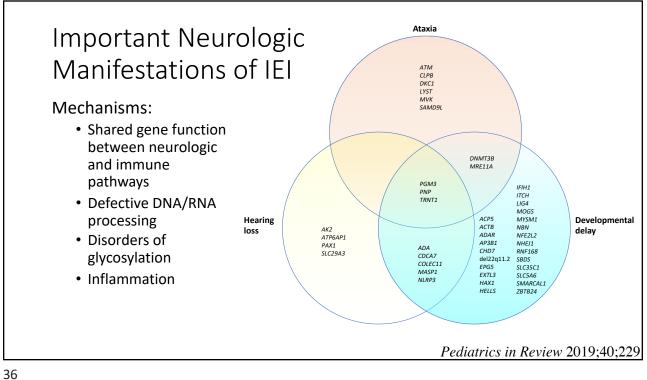

74th Pennsylvania Allergy & Asthma Association Annual Meeting

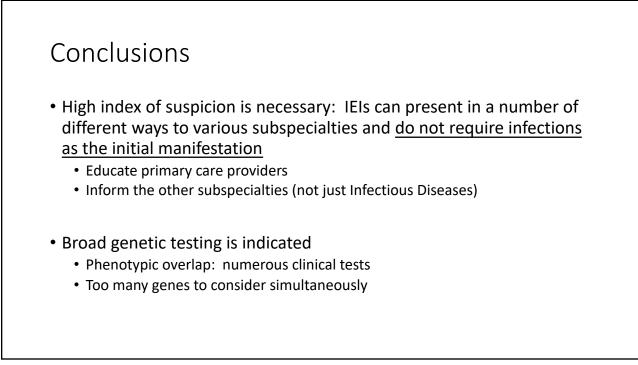

1










30

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

CONDITION	ASSOCIATED PID GENES
Interstitial lung disease	COPA, ITCH, STAT3, TMEM173, TNFAIP3, XIAP
Pulmonary alveolar proteinosis	CD40LG, CSF2RA, GATA2, SLC7A7
Capillaritis and hemorrhage	СОРА
Eosinophilic pneumonia	NSMCE3

CONDITION	ASSOCIATED PID GENES
Allergies	CARD11, CARMIL2, CTLA4, DOCK8, FOXP3, PGM3, SPINK5, WAS, WIPF1
Skeletal dysplasia	ACP5, ADA, ALG12, EXTL3, NBAS, PGM3, RNU4ATAC, RMRP, SMARCAL1

74th PAAA Annual Meeting

JUNE 23-25, 2023 The Hotel Hershey, Hershey, PA

What's New and Different in Antibiotic Allergy? Penicillin Allergy: Then and Now

Presented by: Marcus Shaker, MD, MS, FAAP, FAAAAI, FACAAI

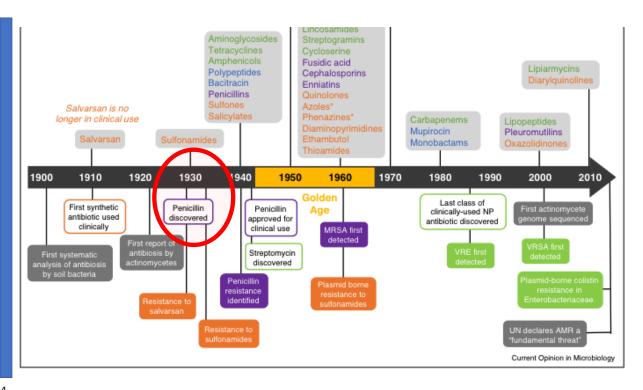
> Saturday, June 24, 2023 12:15 p.m. – 1:00 p.m.

What's New and Different in Antibiotic Allergy?

Penicillin Allergy: Then and Now

Marcus Shaker, MD, MS Professor of Pediatric and Medicine Dartmouth Geisel School of Medicine

Learning Objectives


Upon completion of this activity, participants should be able to:

- Identify patients suitable for direct oral challenge
- Apply the 2022 Drug Allergy Practice Parameter recommendations to clinical practice
- Describe the relationship of GRADE, evidence certainty, strength of recommendations, and shared decision making

Lest we forget...

medium.com

3

Clinical Notes, Suggestions and New Instruments

ANAPHYLACTIC DEATH FROM PENICILLIN

GEORGE L. WALDBOTT, M.D. Detroit

Most allergic reactions from penicillin occur a few days after its administration, namely, as serum sickness or dermatitis. Such manifestations as asthma, vasomotor rhinitis or urticaria arising within a few hours are much less common. A search of the literature reveals no case reports of anaphylactic ¹ shock from injections of penicillin. In one instance so designated ^{1a} there were symptoms of serum sickness.

The following fatality from penicillin is reported here because it represents typical anaphylactic shock. The circumstances leading to death conformed in every respect with my knowledge of this syndrome gained from experience with injections of horse serum, pollen and other antigenic substances.²

REPORT OF A CASE

Miss L. K., 39 years old, had had severe bronchial asthma since March 1945, which followed grass hay fever of eighteen years' duration and had been persistent since July 1946. Thorough diagnostic studies had been made, including roentgenograms of the chest, bronchograms, diagnostic bronchoscopic studies and intradermal tests. These revealed allergic asthma associated with decided emphysema and considerable emačiation. The patient had received the usual symptomatic treatment and a thorough brunosensitization regimes both at a large allergy

COMMENT

Although no autopsy could be done, the diagnosis of anaphylactic shock appears definite because of the characteristic symptoms (tightness in nose and throat, severe dyspnea associated with urticaria) and because of the onset within a few seconds after the hypodermic administration of penicillin. That the injection must have been given intravenously through accidental puncture of a vein is indicated by the appearance of blood at the site of injection and by the "strange taste" in the mouth which is so characteristic in intravenous therapy ⁹—an ominous sign to anyone who deals constantly with allergic persons. The patient had had no drug or medication other than the routine antigenic injections given four hours previously; this could not have accounted for this accident.²

It must be assumed that sensitization to penicillin resulted from previous injections; otherwise the patient could not have tolerated the preceding penicillin treatment as well as she did. She would have had some manifestation of allergy, probably an aggravation of the asthma. I have seen severe asthma occur in I case shortly after the initiation of a second course of penicillin and in another after the first injection of a third course. In the former the attack was so severe that it required several days of intensive treatment before its effect was overcome. It is likely that in this case death would have resulted had the injection of penicillin been made intravenously. In the other patient, the asthmatic seizure was less severe and protracted.

In a review of my record, it was noted that this patient had had severe urticaria, some aggravation of asthma, joint pains and slight fever during the first part of July, about one week after the administration of penicillin. This had not been identified at the time as serum sickness from penicillin, but in all probability presented the outward signs of the development of sensitization to penicillin.

the star when when of allow of exceluteries the following points

was again given 2 vials of penicillin containing 200,000 units each, which was to be administered by her sister, a registered nurse, in doses of 50,000 units. She received her routine hyposensitization treatment (consisting of 2,800 units of short and long ragweed, 600 units of English plantain combined with 0.1 cc. of an extract of alternaria, monilia, torula, smut and yeast) and, in addition, 1/3 of a 33/4 grain ampule (0.08 Gm.) of aminophylline intravenously. When she left the office, after thirty minutes, the site of the antigenic injection showed no unusual degree of local edema and the wheezing had improved from the administration of aminophylline. After arrival at her home, she had only one slight coughing spell during luncheon (12:30 p. m.), but otherwise felt comfortable. At about 1:45 p. m., the first dose of penicillin (50,000 units) was administered into the gluteal region. Within five seconds the patient complained of a strange taste in her mouth and tongue and swelling and tightness in the throat and nose; her face became flushed, bloated and extremely cyanotic; she felt itchy "all over." Leaning over the kitchen table and asking for a glass of water, she collapsed and died immediately.

Waldbott G. JAMA 1949

The Journal of Allergy

Vol. 24

JANUARY, 1953

No. 1

Original Articles

FATAL AND NEAR-FATAL PENICILLIN ANAPHYLAXIS

THREE NEW CASES WITH A NOTE ON PREVENTION

Sheppard Siegal, M.D., Roger W. Steinhardt, M.D., and Robert Gerber, M.D., New York, N. Y.

THAT penicillin may occasionally be a dangerous and even fatal drug should be known to the profession. In terms of direct toxicity the extraordinary antibiotic efficacy of this drug appears to have been matched by its innocuousness and as a result it is being used very freely. Allergic reactions have constituted the sole toxic manifestation attendant upon its administration.

7

Fatal Penicillin Allergy

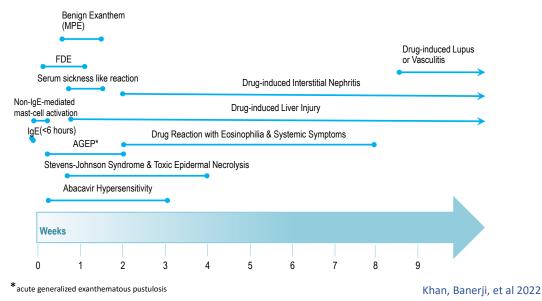
- Fortunately, fatal penicillin anaphylaxis is rare, estimated to occur at a rate of 0.002%.
 - For oral: one case in 35 years and 100 million courses
- Most common cause of fatal drug anaphylaxis in the US and UK
- In a review of 151 deaths due to penicillin between 1951-1965
 - No sex predominance
 - Most between 25-65 years old
 - 44% had respiratory infections
 - 28% had pre-existing allergies
 - 69% had reported prior exposure to penicillin
 - 36% had prior reactions to the drug
 - Symptom onset was typically rapid (< 15 minutes) and death occurred within an hour

Castells, Khan, Phillips. NEJM 2019

Penicillin Allergy

- Most common drug allergy identified in medical records
 - 6-25% reported prevalence
- Most common symptoms are benign cutaneous eruptions
- Rates of positive skin testing seem to have decreased over the decades, with one center reporting positive penicillin skin test rates of:
 - 1995: 15%
 - 2007:3%
 - 2013: 0.3%
- Many, many, many non-IgE mediated rashes associated with oral aminopenicillins
 - Benign delayed exanthems
 - Acute generalized exanthematous pustulosis (AGEP)

Castells, Khan, Phillips. NEJM 2019


Table 1. Drug Allergic Reactions and Syndromes

	Clinical manifestations	Examples of causative agents
IgE mediated	Urticaria, angioedema, bronchospasm, anaphylaxis	β-Lactam antibiotics, platinum-based chemotherapeutics, perioperative agents
Cytotoxic	Hemolytic anemia, thrombocytopenia, granulocytopenia	Penicillin, quinine, sulfonamides
Immune complex	Serum sickness	Penicillin, infliximab, thymoglobulin
Delayed type hypersensitivity	Contact dermatitis, exanthems	Neomycin, glucocorticoids, penicillin, sulfonamide antibiotics
Hypersensitivity vasculitis	Cutaneous or visceral vasculitis	Hydralazine, penicillamine, propylthiouracil
DRESS	Cutaneous, fever, eosinophilia, hepatic dysfunction, lymphadenopathy	Anticonvulsants, sulfonamides, minocycline, allopurinol
Pulmonary drug hypersensitivity	Pneumonitis, fibrosis	Nitrofurantoin, bleomycin, methotrexate
Systemic drug-induced lupus erythematosus	Arthralgias, myalgias, fever, malaise	Hydralazine, procainamide, isoniazid
Cutaneous drug-induced lupus erythematosus	Erythematous/scaly plaques in photodistribution	Hydrochlorothiazide, calcium channel blockers, ACE inhibitors
Drug-induced granulomatous disease	Churg-Strauss syndrome, Wegener's granulomatosis	Propylthiouracil, leukotriene modifiers
Immunologic hepatitis	Hepatitis, cholestatic jaundice	Para-aminosalicylic acid, sulfonamides, phenothiazines
Blistering disorders	Erythema multiforme, SJS, TEN	Sulfonamides, cephalosporins, imidazole anticonvulsants, NSAIDs
Serum sickness-like reactions	Erythema multiforme, arthralgias	Cefaclor, cefprozil
Immunologic nephropathy	Interstitial nephritis, membranous glomerulonephritis	Penicillin, sulfonamides, gold, penicillamine, allopurinol

Abbreviations: ACE, angiotensin-converting enzyme; DRESS, drug rash with eosinophilia and systemic symptoms; NSAIDs, nonsteroidal anti-inflammatory drugs; SJS, Stevens-Johnson syndrome; TEN, toxic epidermal necrolysis.

11

Timeline of Drug Hypersensitivity Reactions

"He is allergic to amoxicillin"

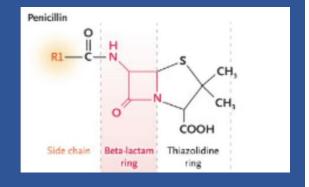
- Carlos, an 18-month old child, was treated for a bilateral ear infection 12 months ago.
- Carlos developed a rash on his face, torso, and extremities after 4 days.
- The amoxicillin was stopped and the rash improved within a week
- Carlos' parents were told Carlos is allergic to amoxicillin and to avoid penicillin
- Carlos subsequently received a course of azithromycin for a subsequent ear infection

Children's Mercy Kansas City. What's the Diagnosis? June 2020

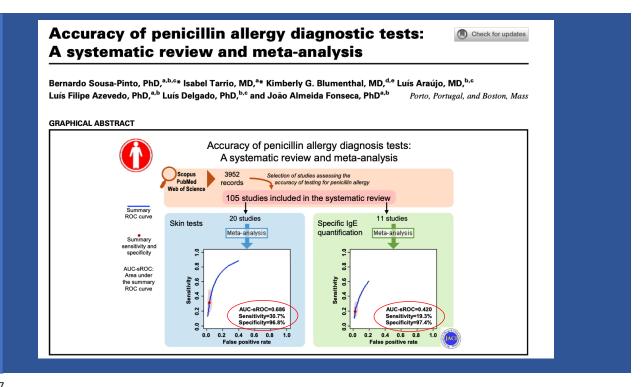
Carlos is diagnosed with a drug allergy

Children's Mercy Kansas City. What's the Diagnosis? June 2020

How would you manage this patient?


- A. No additional management needed, simply avoid penicillins
- B. Schedule a skin testing visit for testing to major and minor determinants and ampicillin, by prick and intradermal testing
- C. Schedule skin testing to Penicillin G and PrePen
- D. Schedule a visit for direct oral challenge to amoxicillin (single dose) without skin testing
- E. Schedule a visit for direct oral challenge to amoxicillin (5-7 day course) without skin testing
- F. Avoid penicillins for now but consider further evaluation after another 6-12 months

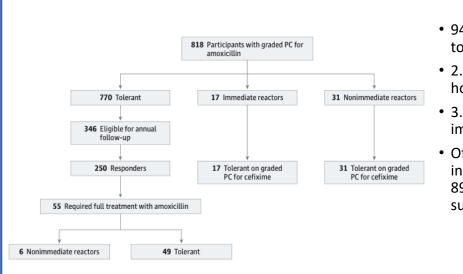
To Test or Not to Test...


That is the Question!

Penicillin Allergy Evaluation

- Use of major and minor determinant for skin testing began in the early 1960's
- Early studies suggested 50-75% PPV and 93% NPV
- More recent data suggests a sensitivity around 31% and specificity around 97%

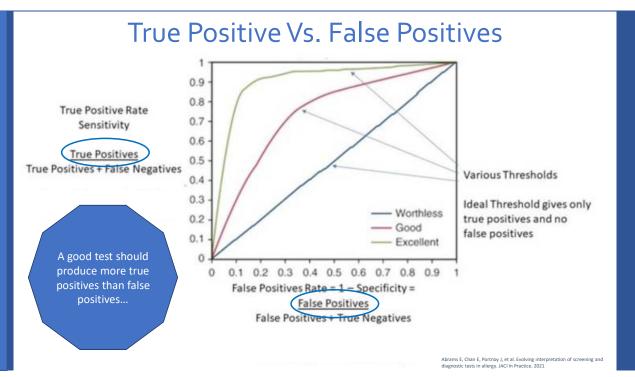
Castells, Khan, Phillips. NEJM 2019; Suosa-Pinto et al JACI 2021



17

Original Investigation

Assessing the Diagnostic Properties of a Graded Oral Provocation Challenge for the Diagnosis of Immediate and Nonimmediate Reactions to Amoxicillin in Children


Christopher Mill, MPH; Marie-Noël Primeau, MD; Elaine Medoff, MD; Christine Lejtenyi, MD; Andrew O'Keefe, MD; Elena Netchiporouk, MD; Alizee Dery, BSc; Moshe Ben-Shoshan, MD, MSc

Amoxicillin direct oral challenge

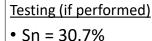
- 94% of children were tolerant of amoxicillin
- 2.1% reacted within an hour
- 3.8% had nonimmediate reactions
- Of those tolerating the initial oral challenge, 89.1% tolerated a subsequent course

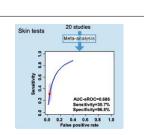
19

Mill et al. Assessing the diagnostic properties of graded oral provocation challenge for the diagnosis of immediate and nonimmediate reactions to amoxicillin in children. JAMA Pediatrics. 2016

In additional to considering true positives and false positives, we also need to be aware of the impact of disease prevalence...

	Disease present	Disease absent	
Positive	True Positive	False Positive	<mark>PPV</mark> =
Test	(TP)	(FP)	TP /
		Type I Error	(TP+FP)
Negative	False Negative	True Negative (TN)	<mark>NPV</mark> =
Test	(FN)		TN /
	Type II Error		(FN+TN)
	<mark>Sensitivity</mark> =	Specificity =	
	TP / (TP+FN)	TN / (TN+FP)	


- Sensitivity/Specificity are TEST characteristics
- PPV/NPV are properties of both the TEST and the likelihood of disease


21

History + Evidence

<u>History</u>

 Carlos is 18-months old and developed a maculopapular rash 4 days into treatment of a bilateral otitis media

<u>Evidence</u>

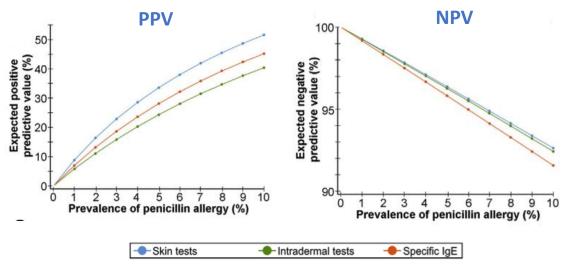
Abrams E, Chan E, Portnoy J, et al. Evolving interpretation of screening and diagnostic tests in allergy. JACI In Practice. 2021

 94% of children tolerant of direct oral challenge


	Disease +	Disease -	
Skin Test +	(60*0.307) = 18.4	(940-910) = 30	<mark>Skin Test PPV = 38.0%</mark>
Skin Test -	(60-18.4) = 41.6	(940*0.968) = 910	<mark>Skin Test NPV = 95.6%</mark>
	Pretest prob 6% = 60	(1000-60) = 940	Total patients = 1000

(Alt example...)

History

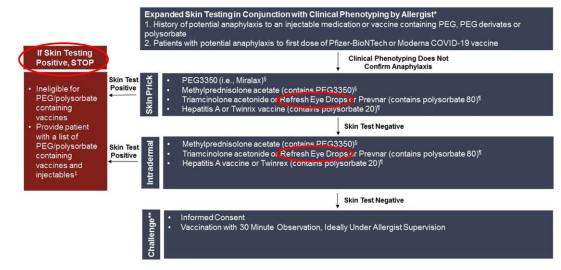

- 54-year-old woman who develops urticaria, angioedema, wheezing, and hypotension 10 minutes into an ampicillin infusion
- Testing (if performed) • Sn = 30.7%

Evidence High pretest probability of at least 50% based on history (probably higher)

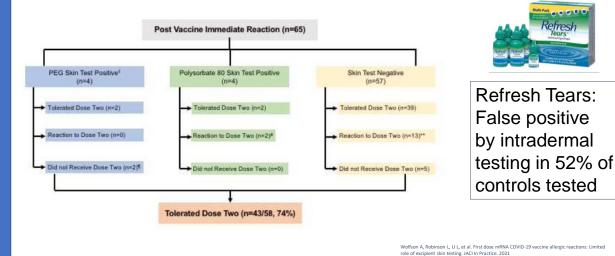
	Disease +	Disease -	
Skin Test +	(500*0.307) = 154	(500-484) = 16	<mark>Skin Test PPV = 91.0%</mark>
Skin Test -	(500-154) = 346	(500*0.968) = 484	<mark>Skin Test NPV = 58.3%</mark>
	Pretest prob 50% = 500	(1000-500) = 500	Total patients = 1000

Predictive value and disease prevalence

Sousa-Pinto et al JACI 2021


Is NPV the MPV?

- Negative predictive value is important
- Without good negative predictive value, drug re-administration could cause a repeat reaction



Why PPV matters, an example...

Baneji et al. mRNA vaccines to prevent COVID-19 disease and reported allergic reactions: curren evidence and a suggested approach. JACI In Practice 2021

Limited Role of Excipient Skin Testing for COVID-19 Vaccination

Favors severe reaction

80 100

le of excipient skin testing. JACI In Practice. 2021

Recurrent COVID-19 Anaphylaxis

Source	Second doses administered	Second dose anaphylaxis	Percentage (95% CI)	Does not favor seve reaction	re			
Tuong et al, ¹⁴ 2021	15	2	13.33 (1.66-40.46)	5				
Krantz et al, ¹⁵ 2021	4	0	0.00 (0.00-60.24)	· •	_		_	
Rasmussen et al, ¹⁶ 2021	30	0	0.00 (0.00-11.57)	· •				
Krantz et al, ¹⁷ 2021	162	3	1.85 (0.38-5.32)					
Kessel et al, ¹⁹ 2021	18	0	0.00 (0.00-18.53)	•	_			
Kelso, ²⁰ 2021	3	0	0.00 (0.00-70.76)					-
Mustafa et al, ²¹ 2021	2	0	0.00 (0.00-84.19)		_		_	_
Vanijcharoenkarn et al, ²² 2021	73	0	0.00 (0.00-4.93)	•				
Robinson et al, ²³ 2021	860	0	0.00 (0.00-0.43)					
Eastman et al, ²⁴ 2021	53	0	0.00 (0.00-6.72)	· •				
Park et al, ²⁵ 2021	1	0	0.00 (0.00-97.50)					
Arroliga et al, ²⁶ 2021	6	0	0.00 (0.00-45.93)					
Loli-Ausejo et al, ²⁷ 2021	10	0	0.00 (0.00-30.85)	· •		-		
Pitlick et al, ²⁸ 2021	44	0	0.00 (0.00-8.04)	•				
Yacoub et al, ²⁹ 2021	8	0	0.00 (0.00-36.94)	•		_		
Shavit et al, ³⁰ 2021	6	0	0.00 (0.00-45.93)	· •				
Kohli-Pamnani et al, ³¹ 2021	16	0	0.00 (0.00-20.59)		_			
Inoue et al, ³² 2021	2	0	0.00 (0.00-84.19)	•	-	_	_	_
Warren et al, ³³ 2021	22	1	4.55 (0.12-22.84)		_			
Carpenter et al, ³⁴ 2021	1	0	0.00 (0.00-97.50)	· •			_	
Kaplan et al, ³⁵ 2021	30	0	0.00 (0.00-11.57)	•				
Overall: <i>I</i> ² = 0.3%	1366	6 (1360 successes)	0.16 (0.01-2.94)	0	20	40	60	80
				0		centag		

- The global prevalence of immediate severe allergic reactions to the mRNA COVID-19 vaccines is 7.91/million doses
- A systematic review and metaanalysis of 22 studies and 1366 patients with 1st dose immediate allergic reactions to mRNA COVID-19 vaccine who were then re-vaccinated with a 2nd dose found that 99% safely tolerated re-vaccination.

Greenhawt M, Abrams EM, Shaker MS, et al. JACI In Practice 2021; Chu D, Abrams E, Golden D, et al. JAMA Internal Medicine 2022

28

27

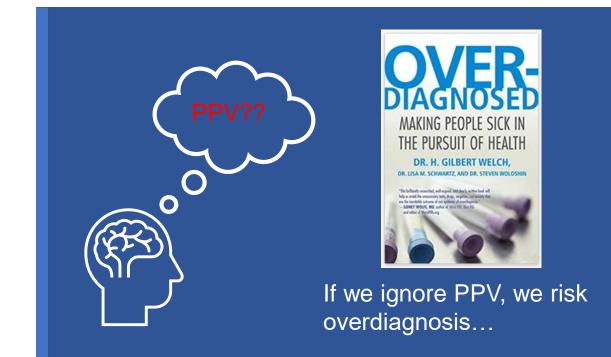
Recurrent COVID-19 Anaphylaxis...

Source	Second doses administered	Second dose anaphylaxis	Percentage (95% CI)	Does not favor severe reaction	
Tuong et al,14 2021	15	2	13.33 (1.66-40.46)		
Krantz et al, ¹⁵ 2021	4	0	0.00 (0.00-60.24)	•	
Rasmussen et al, ¹⁶ 2021	30	0	0.00 (0.00-11.57)	•	
Krantz et al, ¹⁷ 2021	162	3	1.85 (0.38-5.32)	•	
Kessel et al, ¹⁹ 2021	18	0	0.00 (0.00-18.53)	• • · · · · · · · · · · · · · · · · · ·	
Kelso, ²⁰ 2021	3	0	0.00 (0.00-70.76)		
Mustafa et al, ²¹ 2021	2	0	0.00 (0.00-84.19)		+
Vanijcharoenkarn et al, ²² 2021	73	0	0.00 (0.00-4.93)	•	
Robinson et al, ²³ 2021	860	0	0.00 (0.00-0.43)		
Eastman et al, ²⁴ 2021	53	0	0.00 (0.00-6.72)	• • · · · · · · · · · · · · · · · · · ·	
Park et al, ²⁵ 2021	1	0	0.00 (0.00-97.50)		-
Arroliga et al, ²⁶ 2021	6	0	0.00 (0.00-45.93)	• • • • • • • • • • • • • • • • • • • •	
Loli-Ausejo et al, ²⁷ 2021	10	0	0.00 (0.00-30.85)	• • • • • • • • • • • • • • • • • • •	
Pitlick et al, ²⁸ 2021	44	0	0.00 (0.00-8.04)	•	
Yacoub et al, ²⁹ 2021	8	0	0.00 (0.00-36.94)	• • • • • • • • • • • • • • • • • • • •	
Shavit et al, ³⁰ 2021	6	0	0.00 (0.00-45.93)	• • • • • •	
Kohli-Pamnani et al, ³¹ 2021	16	0	0.00 (0.00-20.59)	• • · · · · · · · · · · · · · · · · · ·	
Inoue et al, ³² 2021	2	0	0.00 (0.00-84.19)		-
Warren et al, ³³ 2021	22	1	4.55 (0.12-22.84)	• • · · · · · · · · · · · · · · · · · ·	
Carpenter et al, ³⁴ 2021	1	0	0.00 (0.00-97.50)		-
Kaplan et al, ³⁵ 2021	30	0	0.00 (0.00-11.57)	• • · · · · · · · · · · · · · · · · · ·	
Overall: <i>I</i> ² = 0.3%	1366	6 (1360 successes)	0.16 (0.01-2.94)	0 20 40 60	80
				Percentage (95% C	I)

- Among patients with 1st dose immediate allergic reactions the risk of a severe immediate reaction with the second dose was 0.16% (95% Cl, 0.01-2.94%)
 - For 1st dose severe reactions, the risk was 4.94% (95% CI, 0.93-22.28%)
 - The risk of non-severe immediate reactions was 13.65% (95% Cl, 7.76-22.9%)

Chu D, Abrams E, Golden D, et al. JAMA Internal Medicine 2022

Recurrent COVID-19 Anaphylaxis – Role of Testing


100

Study	тр	FP	FN	TN	Sensitivity
Study Alwuhizi et al (PEG) Alwuhizi et al (PEG) Alwuhizi et al (PEG) Carpenter et al (PEG) Contractor et al (PEG) Carpenter et al (PEG) Contractor et al (PEG) Carpenter et al (PEG) Contractor et al (PEG) Carpenter et al (PEG) Park et al (PEG) Park et al (PEG) Carpenter et al (PEG)	5	110000000000000000000000000000000000000	1100000000134040455330000000440000756001441000101712	800-11000007410000000044888000000011000014000004404040000074 8	
l ² (Sensitivity) = 0.03 [0.0 [2(Specificity) = 0.03 [0.0 [2(Bivariate) = 0.02 [0.00-	0.06]				

- Among patients with 1st dose immediate allergic reactions to mRNA COVID vaccines
 - PEG Sn: 0.02 (95% Crl 0.00-0.007)
 - PEG Sp: 0.99 (95% Crl 0.96-1)
 - PS Sn: 0.03 (95% Crl 0-0.011)
 - PS Sp: 0.97 (95% Crl 0.91-1)
 - Vaccine Sn: 0.2 (95% Crl 0.01-0.52)
 - Vaccine Sp: 0.97 (95% Crl 0.9-1)
 - Combined Sn: 0.03 (95% Crl 0-0.08)
 - Combined Sp: 0.98 (95% Crl 0.95-1)

Greenhawt M, Shaker M, Golden D, Abrams E, Blumenthal K, et al. Allergy 2023

PEG: polyethylene glycol; PS: polysorbate 80

Some additional studies re: safety of direct oral challenge in kids

Mori F, Cianferoni A, Barni S, Pucci N, Rossi ME, Novembre E. Amoxicillin allergy in children: five-day drug provocation test in the diagnosis of nonimmediate reactions. J Allergy Clin Immunol Pract. 2015; 3: 375-80 e1.

Caubet JC, Kaiser L, Lemaitre B, Fellay B, Gervaix A, Eigenmann PA. The role of penicillin in benign skin rashes in childhood: a prospective study based on drug rechallenge. J Allergy Clin Immunol. 2011; 127: 218-22

Confino-Cohen R, Rosman Y, Meir-Shafrir K, et al. Oral Challenge without Skin Testing Safely Excludes Clinically Significant Delayed-Onset Penicillin Hypersensitivity. J Allergy Clin Immunol Pract. 2017; 5: 669-75

Labrossse R, Paradis L, Lacombe-Barrios J, et al. Efficacy and Safety of 5-Day Challenge for the Evaluation of Nonsevere Amoxicillin Allergy in Children. J Allergy Clin Immunol Pract. 2018; 6: 1673-80.

Mustafa et al. Comparing direct challenge to penicillin skin testing for the outpatient evaluation of penicillin allergy: a randomized controlled trial. JACI In Practice 2019

Okay Okay, buy what about grown-ups?

Are adults just "big kids"?

- Data for direct oral challenge to amoxicillin is stronger in pediatrics
- Adults are less likely to experience benign viral exanthems and are more likely to have severe or fatal penicillin anaphylaxis
 - Still, estimated rates of penicillin anaphylaxis are between 0.015-0.004% with fatality rates from anaphylaxis between 0.0015-0.002% of treated patients
- Still, in adults with reactions more than 1-10 years ago, limited to the skin without angioedema, blistering, or exfoliative features, without systemic symptoms or anaphylaxis, direct oral challenge is also an option

Idsoe O, Guthe T, Willcox RR, de Weck AL. Nature and extent of penicillin side-reactions, with particular reference to fatalities from anaphylactic shock. Bull World Health Organ. 1968; 38: 159-88; Jerschow E, Lin RY, Scaperotti MM, McGinn AP. Fatal anaphylaxis in the United States, 1999-2010: temporal patterns and demographic associations. J Allergy Clin Immunol. 2014; 134: 1318-28 e7.

35

Are adults just "big kids"?

- In a prospective RCT comparing skin testing to direct oral challenge:
 - Adults and children, mean age 35.3 years (SD 25.3)
 - 70/80 (87.5%) of patients were skin test negative and all tolerated amoxicillin challenge
 - In 76/79 (96.2%) of patients with direct oral challenge (without skin testing) was negative, and of those patients with positive challenges reactions were mild.

Mustafa et al. Comparing direct challenge to penicillin skin testing for the outpatient evaluation of penicillin allergy: a randomized controlled trial. JACI In Practice 2019

Some additional studies re: safety of direct oral challenge in adults

- Banks TA, Tucker M, Macy E. Evaluating Penicillin Allergies Without Skin Testing. Curr Allergy Asthma Rep. 2019; 19: 27.
- Blumenthal KG, Huebner EM, Fu X, et al. Risk-based pathway for outpatient penicillin allergy evaluations. J Allergy Clin Immunol Pract. 2019; 7: 2411-4 e1.
- Confino-Cohen R, Rosman Y, Meir-Shafrir K, et al. Oral Challenge without Skin Testing Safely Excludes Clinically Significant Delayed-Onset Penicillin Hypersensitivity. J Allergy Clin Immunol Pract. 2017; 5: 669-75
- Iammatteo M, Alvarez Arango S, Ferastraoaru D, et al. Safety and Outcomes of Oral Graded Challenges to Amoxicillin without Prior Skin Testing. J Allergy Clin Immunol Pract. 2019; 7: 236-43.
- Trubiano JA, Vogrin S, Chua KYL, et al. Development and Validation of a Penicillin Allergy Clinical Decision Rule. JAMA Intern Med. 2020; 180: 745-52.
- Tucker MH, Lomas CM, Ramchandar N, Waldram JD. Amoxicillin challenge without penicillin skin testing in evaluation of penicillin allergy in a cohort of Marine recruits. J Allergy Clin Immunol Pract. 2017; 5: 813-5.

Red flags for direct oral challenge

Contraindications to Drug Challenges

Severe Cutaneous Adverse Drug Reactions

Drug-Induced Neutrophilic Dermatosis

Drug-Induced Autoimmune Diseases

Bullous or Exfoliative Drug Reactions

Non-Cutaneous Organ Specific Drug Reactions

Drug Induced Vasculitis

Severe Culprit Drug Anaphylaxis

Additional Considerations for Direct Oral Challenge

Agent	Considerations (no red flags)
Cephalosporin	No history of anaphylaxis Additional option to skin test first
Macrolides	No history of anaphylaxis
Fluoroquinolones	No history of anaphylaxis
Sulfonamides	No history of anaphylaxis

Key Resource

2022 Drug Allergy Parameter

Beta-lactam Antibiotics

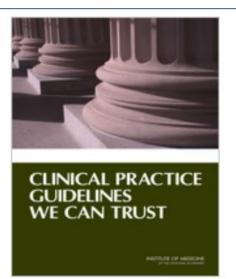
Consensus Based Statement	Strength of Recommendation	Certainty of Evidence
We suggest penicillin skin testing for patients with a <u>history of anaphylaxis or a recent reaction</u> suspected to be IgE-mediated.	Conditional	Low
We recommend <u>against</u> the routine use of multiple day challenges in the evaluation of penicillin allergy.	Strong	Low

2022 Drug Allergy Practice Parameter

Beta-lactam Antibiotics

Consensus Based Statement	Strength of Recommendation	Certainty of Evidence
We recommend <u>against</u> penicillin skin testing prior to direct amoxicillin challenge in pediatric patients with a history of benign cutaneous reaction (such as MPE and urticaria).	Strong	Moderate
We suggest that direct amoxicillin challenge be considered in adults with a history of distant and benign cutaneous reactions (such as MPE and urticaria).	Conditional	Low

2022 Drug Allergy Practice Parameter


Beta-lactam Cross-Reactivity

- Risk for cross-reactivity amongst beta-lactams is lower than previously reported
- Carbapenem may be administered without testing or precautions to anyone with penicillin or cephalosporin allergy, regardless of reaction type

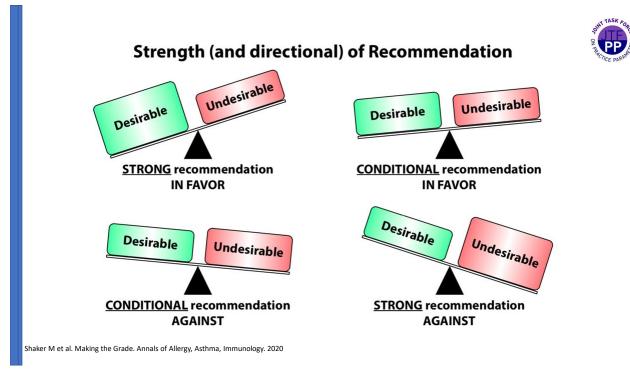

Stratification of Reaction Type	Verified Penicillin Allergy	Unverified Penicillin Allergy	Verified Cephalosporin Allergy	Unverified Cephalosporin Allergy
Anaphylaxis	Administer non- cross-reactive cephalosporin without testing or precautions	Administer non- cross-reactive cephalosporin without testing or precautions	Penicillin skin testing and drug challenge prior to administration of penicillin therapy	Penicillin skin testing and drug challenge prior to administration of penicillin therapy
Nonanaphylaxis	Administer any cephalosporin without testing or precautions	Administer any cephalosporin without testing or precautions	Administer penicillin without testing or precautions	Administer penicillin without testing or precautions

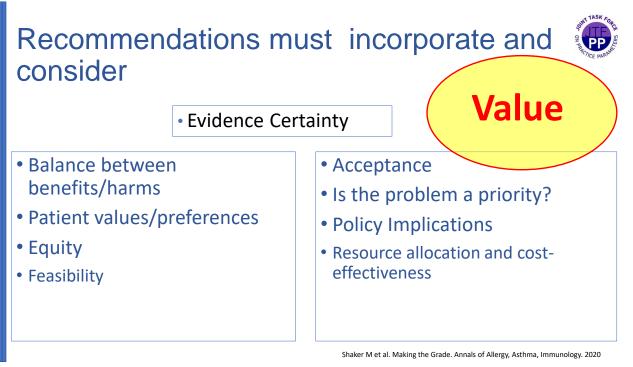
Guidelines and Best Evidence

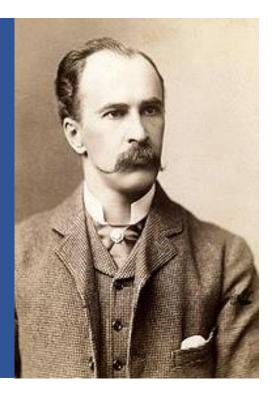
- Clear description of evidence rating
- Transparency
- Up to date
- Balanced
- Contextual
- Unbiased
- Fair
- Actionable
- Cost-effective

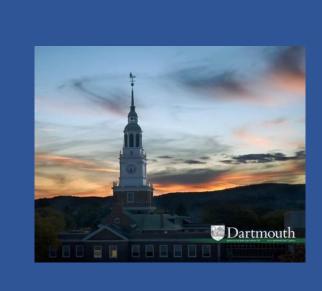
Institute of Medicine 2011

Allergy Guidelines and Practice Parameters


www.allergyparameters.org


Grading of Recommendations Assessment, Development and Evaluation


- Began in 2000 to develop a common, sensible, clear, and transparent approach to:
- Grade certainty of evidence
- Describe strength of recommendations



Medicine is a science of uncertainty and an art of probability – William Osler (1849-1919)

Key Messages

- As Dr. Osler advised, we must appreciate uncertainty of medicine and understand how to incorporate probability of likely and unlikely events when managing patients
- NPV is important in interpreting allergy testing, but PPV cannot be ignored
- Direct oral challenge to antibiotics can be considered contextually. Pediatric patients with benign cutaneous reactions are good candidates
- The most valuable tool for risk stratification is the clinical history.

Thank You

74th PAAA Annual Meeting

JUNE 23-25, 2023 The Hotel Hershey, Hershey, PA

WORKSHOP: Hypereosinophilic Syndromes- Evaluation and Management

Presented by: Amy Klion, MD

Saturday, June 24, 2023 1:15 p.m. – 2:15 p.m.

Slides will be provided to attendees who registered for the workshop.

74th PAAA Annual Meeting

JUNE 23-25, 2023 The Hotel Hershey, Hershey, PA

Presentations for Sunday, June 25, 2023

7:45 am – 8:30 am	Evidence-based Treatment of Chronic Rhinosinusitis Anju Peters, MD, MSCI
8:30 am – 9:15 am	United Airways: The Clinical Impact of Upper and Lower Airway Connection Anju Peters, MD, MSCI
9:45 am – 10:30 am	The Psychosocial Impact of Food Allergies: What Every Allergist Should Know <i>Hemant Sharma, MD, MHS</i>
10:30 am – 11:15 am	From Surviving to Thriving: Rediscovering Fulfillment in Allergy Immunology Practice Hemant Sharma, MD, MHS

74th PAAA Annual Meeting

JUNE 23-25, 2023 The Hotel Hershey, Hershey, PA

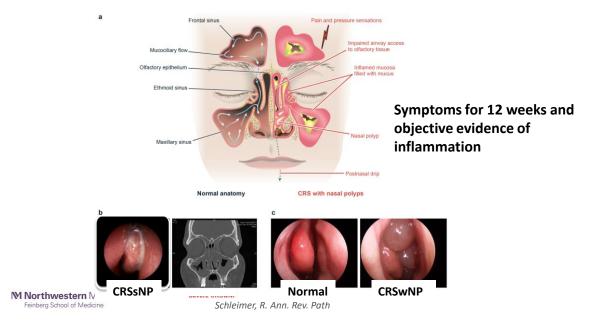
Evidence-based Treatment of Chronic Rhinosinusitis

Presented by: Anju Peters, MD, MSCI

Sunday, June 25, 2023 7:45 a.m. – 8:30 a.m. Morthwestern Medicine[®] Feinberg School of Medicine

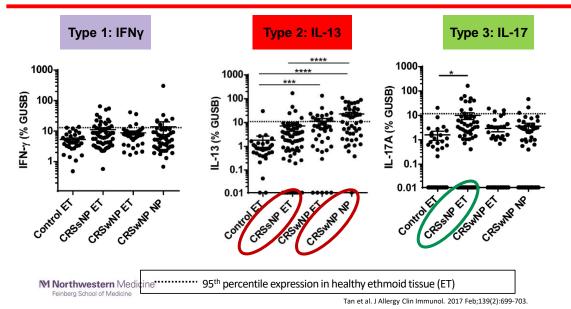
Evidence Based Treatment of Chronic Rhinosinusitis

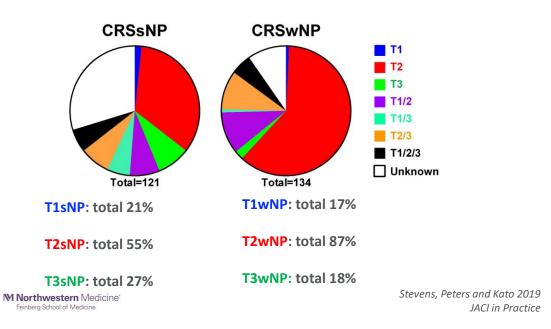
Anju T Peters, MD MSCI


Professor of Medicine

Director of Clinical Research, Division of Allergy- mmunology Medical Director, Northwestern Medicine Clinical Research Un Northwestern University Feinberg School of Medicine

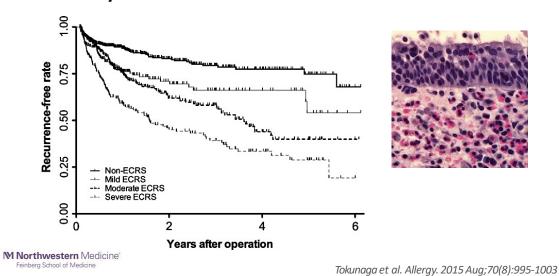
Objectives


- Be familiar with the pathogenesis of chronic rhinosinusitis
 - Inflammatory endotypes and phenotypes
 - Importance of mixed endotypes
- Be familiar with treatments based on inflammatory endotypes
 - Biologics
 - Steroids
 - Surgery
 - Antibiotics

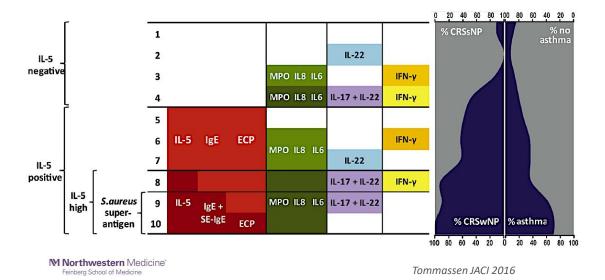

M Northwestern Medicine* Feinberg School of Medicine

Chronic Rhinosinusitis

Inflammatory Endotypes in Chronic Rhinosinusitis

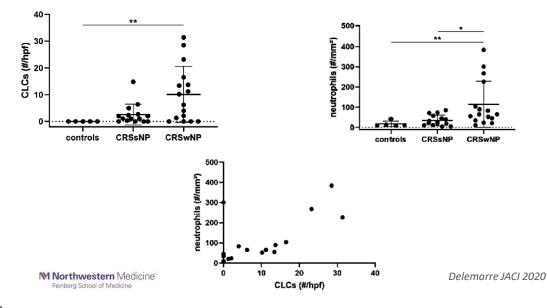


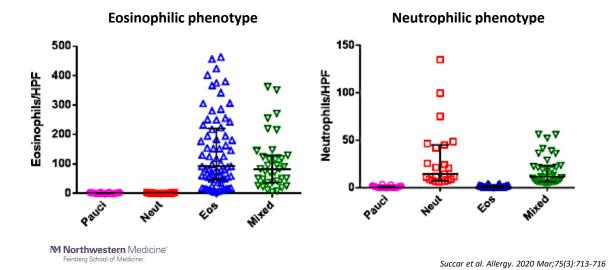
Heterogeneity of Inflammatory Endotypes in CRS


Why are endotypes and phenotypes important?

- Comorbidities
- Disease severity
- Treatment

Type 2 Inflammation (Eosinophils) and Worse CRS Disease Severity


Why is it important to target type 3 (neutrophilic) or mixed inflammation?



CRS Cluster Analysis Based on Cytokines

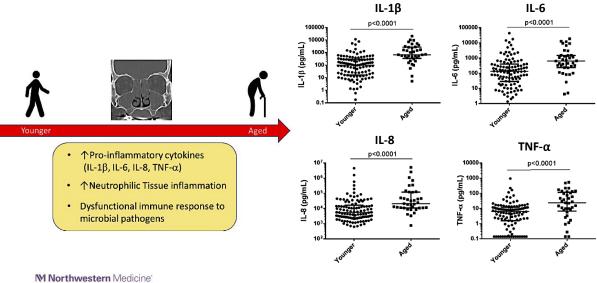
9

Neutrophilic Inflammation in Type 2 CRSwNP

Mixed inflammation in chronic rhinosinusitis

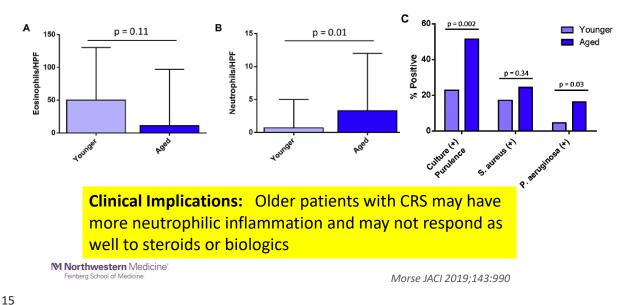
11

	Paucigranulocytic	Neutrophilic	Eosinophilic	Mixed granulocytic	P-value
No.	33	23	73	35	
Age (years)	50.3 ± 14.0	54.1 ± 16.6	48.1 ± 13.5	47.5 ± 13.6	.26
Sex, no. (% female)	17 (52)	7 (30)	33 (45)	15 (43)	.47
Race, no. (% white)	29 (88)	20 (87)	60 (82)	30 (86)	.87
Current smoker, no. (%)	2 (6)	2 (9)	5 (7)	1 (3)	.80
BMI (kg/m²)	30.5 ± 11.2	30.4 ± 6.7	30.5 ± 6.0	28.6 ± 6.4	.68
Nasal polyps, no. (%)	6 (15)	11 (48)	55 (75)	26 (74)	<.0001
Asthma, no. (%)	9 (27)	9 (39)	26 (36)	18 (51)	.21
Allergic rhinitis, no. (%) AERD, no. (%)	19 (58) 0 (0)	12 (52) 1 (4)	45 (62) 10 (14)	26 (74) 5 (14)	.20 .09
AFRS, no. (%)	1 (3)	1 (4)	12 (16)	7 (20)	.08
NCS, no. (%)	25 (86)	19 (83)	59 (81)	28 (80)	.92
LTR, no. (%)	4 (12)	5 (22)	21 (29)	11 (31)	.22
SNOT-22 score	43.0 ± 19.5	47.0 ± 20.3	41.2 ± 18.5	56.2 ± 21.7	.03
Rhinologic	11.8 ± 5.0	12.4 ± 5.8	11.8 ± 5.2	14.7 ± 4.7	.18
Extranasal	7.9 ± 3.6	8.7 ± 2.9	7.0 ± 3.6	8.0 ± 3.3	.36
Ear/Facial	8.2 ± 4.8	8.0 ± 5.1	7.4 ± 5.2	11.0 ± 5.3	.06

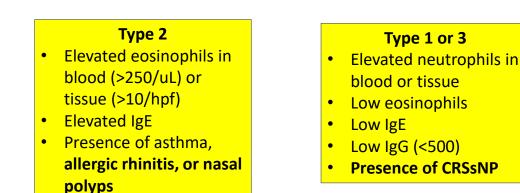

	Paucigranulocytic	Neutrophilic	Eosinophilic	Mixed granulocytic	P-value
No.	33	23	73	35	
CT score	11.0 (8.0 to 14.0)	15.0 (7.5 to 19.0)	16.5 (13.0 to 20.5)	17.0 (14.0 to 21.0)	<.0001
SIT score	-3.0 (-7.0 to -1.0)	-9.0 (–19.5 to –1.5)	-13.0 (-26.0 to -3.0)	-14.0 (-25.5 to -4.0)	.04
Mucopurulence, no. (%)	11 (33)	14 (61)	12 (16)	9 (26)	.0005
Prior surgery, no. (%)	8 (24)	8 (35)	29 (40)	17 (49)	.21

Patients with mixed inflammation have more severe disease

M Northwestern Medicine* Feinberg School of Medicine


Succar et al. Allergy. 2020 Mar;75(3):713-716

Endotypes Vary Based on Age


Feinberg School of Medicine

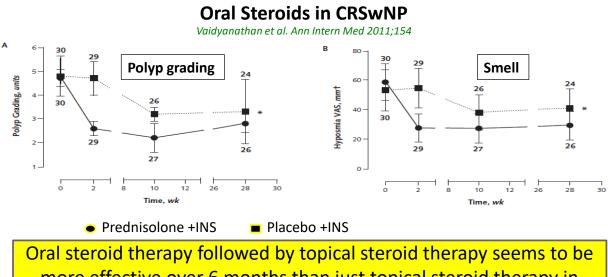
Morse JACI 2019;143:990

Type 3 Inflammation in Older Patients with CRS

How to measure endotype clinically?

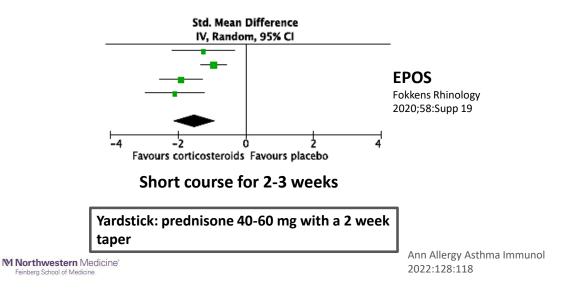
M Northwestern Medicine" Feinberg School of Medicine

THERAPY FOR CRS


STEROID THERAPY FOR CRS

Short-course oral steroids as an adjunct therapy for chronic rhinosinusitis (Review)

- At end of the treatment course (two to there weeks) there is an improvement in health-related quality of life and symptom severity in patients with CRSwNP taking oral corticosteroids.
 - No improvement after 3-6 months
- More research is needed in patients with CRSsNP
 M Northwestern Medicine



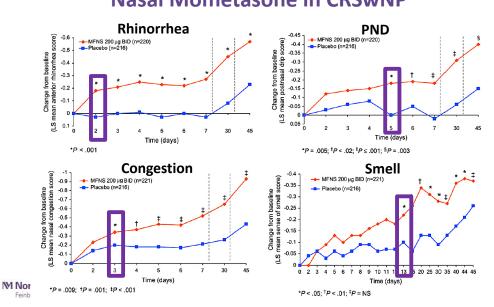
more effective over 6 months than just topical steroid therapy in decreasing polyp size and improving olfaction

Feinberg School of Medicine

Feinberg School of Medicine

Oral Corticosteroid Use in CRSwNP

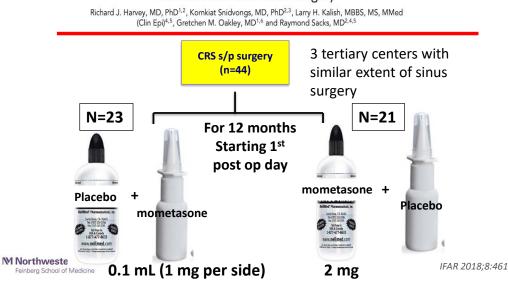
Should intranasal (topical) corticosteroid (INCS), rather than no intranasal corticosteroid, be used in chronic rhinosinusitis with nasal polyposis (CRSwNP)?

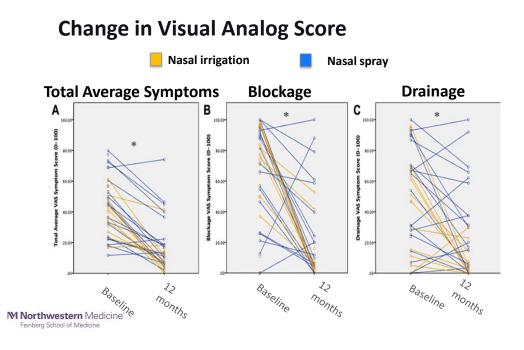

Statement	Strength of recommendation	Certainty of evidence
In people with chronic rhinosinusitis with nasal polyposis, the guideline panel suggests intranasal corticosteroid rather than no intranasal corticosteroid	Conditional	Low

Why conditional recommendation?

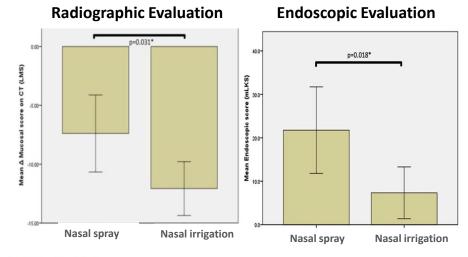
Small to moderate treatment effect

Ex: QOL improved by 6.83 with steroid rinses and 7.86 with EDS- FLU but less than MID of 8.9 of SNOT-22

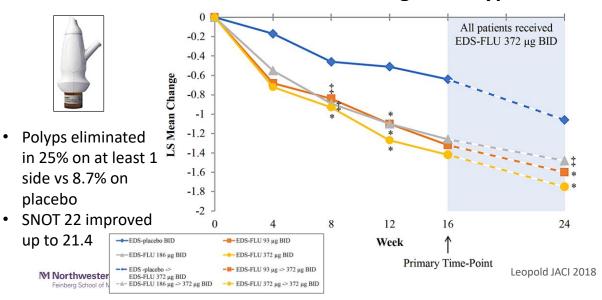

Small JACI 2008;121:928

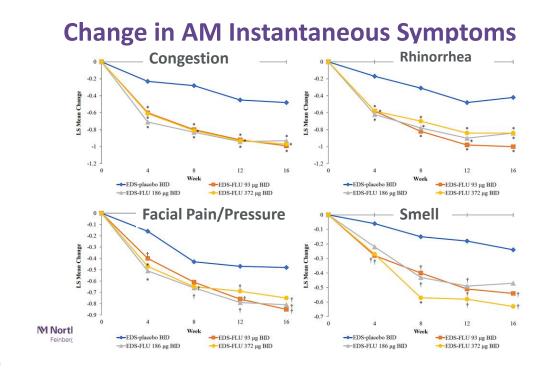


Nasal Mometasone in CRSwNP


24

Corticosteroid nasal irrigations are more effective than simple sprays in a randomized double-blinded placebo-controlled trial for chronic rhinosinusitis after sinus surgery




Radiographic and Endoscopic Improvement with Steroid Rinse vs Steroid Nasal Spray

M Northwestern Medicine* Feinberg School of Medicine

NAVIGATE II: EDS-FLU: Mean Change in Polyp Scores

CRS without Nasal Polyps

Optinose Announces Positive Top-line Results of ReOpen2, its second Phase 3 Clinical Trial of XHANCE for Treatment of Chronic Sinusitis. June 13, 2022 (GLOBE NEWSWIRE)

Morthwestern Medicine* Feinberg School of Medicine

Corticosteroid Stents for CRSwNP

- Dilate the obstructed cavity
- FDA approved
- Delivers steroid directly to ethmoid cavity for 3 months
- 1350 µg of MF
- Bioabsorbable polymer degrades over 90 days

	Patient-Important outcomes									
	Critical C	Outcomes	Important Outcomes							
	HR-QoL SNOT-22 (0-120)	Symptoms (Nasal Obstruction) VAS (0-3)	Smell UPSIT (0-40)	Rescue Surgery	Polyp Size (0-3)	Severe Adverse Events	Any Adverse Events			
Placebo (reference)	-19.41	-0.56	3.54	13.58%	-0.60	2.76%	28.66%			
Stent	2.35 (-5.92, 10.62)	-0.31 (-0.54, -0.08)	3.81 (1.22, 6.39)	-10.3% (-12.9%, -0.2%)	-0.53 (-1.11, 0.04)	-1.3% (-5.6%, 2.9%)	-4.2% (-15.5%, 7.0%)			
Spray	-3.62 (-9.27, 2.04)	-0.51 (-0.61, -0.41)	3.24 (2.05, 4.42)	-10.7% (-13%, -2.1%)	-0.64 (-0.85, -0.43)	-0.1% (-0.8%, 0.5%)	2.7% (-0.7%, 6.1%)			
Rinse	-6.83 (-11.94, -1.71)	- 0.21 (-0.76, 0.33)	2.77 (-0.84, 6.39)		-0.46 (-1.31, 0.39)	0.00% (-4.3%, 4.2%)	-0.6% (-8.5%, 7.3%)			
EDS	-7.86 (-14.64, -1.08)	-0.35 (-0.51, -0.18)	4.10 (1.69, 6.52)	- 4.3% (-6.9%, -0.9%)	-0.56 (-0.97, -0.14)	-1.0% (-3.3%, 1.3%)	2.9% (-14.8%, 20.7%			
		.0.15	E 03	-11.0%	_1 17	N 2%	2 1%			
	Among most beneficial	Among	least beneficial / no cle to placebo	ar effect compared	No data (blank)		ate CoE (Solid) x CoE (shaded)			

Quality of life: EDS or rinse (the rest had either no benefit or least beneficial)


Symptoms: Spray, EDS or stent (Rinse or drop either no benefit or least beneficial)

Smell: Stent > EDS, spray or drops

Rescue surgery: EDS > Spray or stent

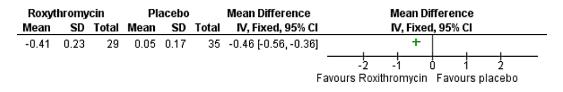
ANTIBIOTICS FOR CRS

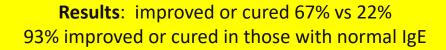
Morthwestern Medicine* Feinberg School of Medicine

Systemic and topical antibiotics for chronic rhinosinusitis (Review)

2016

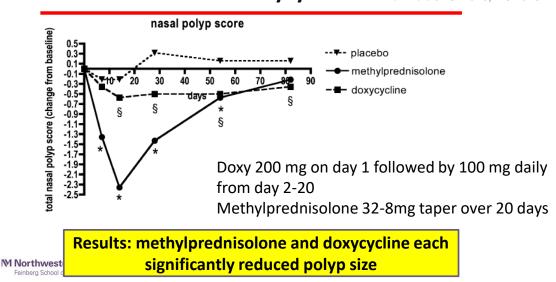
5 RCT (293 participants)


"We found very little evidence that systemic antibiotics are effective in patients with CRS" $\!$


"We did find moderate quality evidence of a modest improvement in diseasespecific quality of life in adults with CRSsNP receiving three months of a macrolide antibiotic; by 3 months later no difference was found"

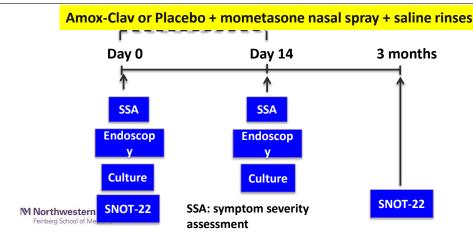
Long-term Antibiotics (Roxithromycin) in CRS

Wallwork Laryngoscope 2006;116:189


SNOT 20: Change from baseline at end of treatment

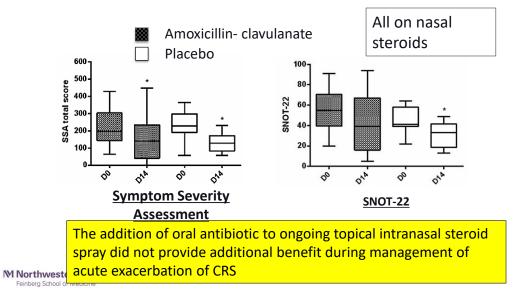
M Northwestern Medicine' Feinberg School of Medicine

Nasal Polyp Score Improved with Methylprednisolone or Doxycycline Van Zele JACI 2010;125:1016

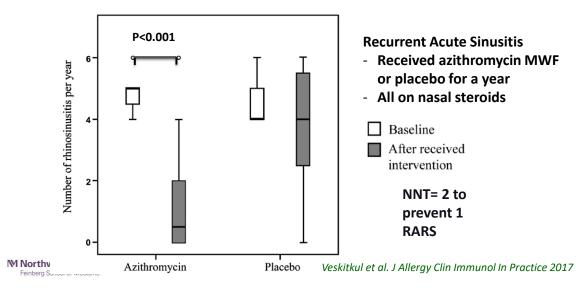


Amoxicillin-clavulanate for patients with acute

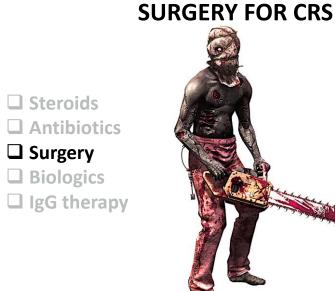
exacerbation of CRS

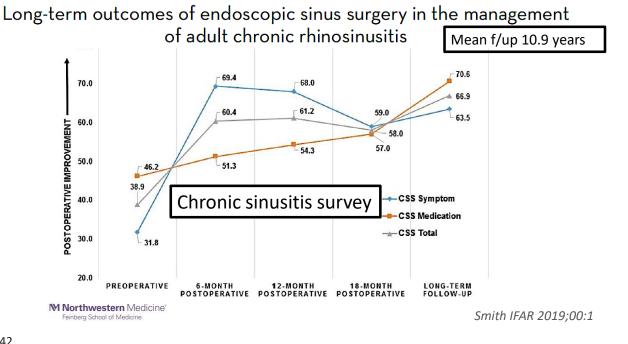

(Sabino et al. Int Forum Allergy Rhinol 2017;7:135)

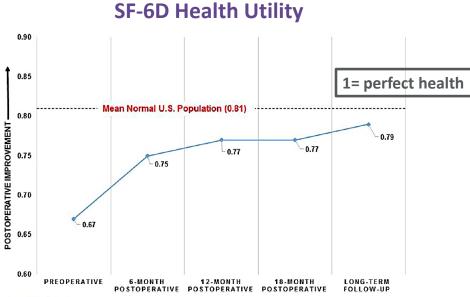
Acute exacerbation of CRS: Adult patients with CRS with worsening sinonasal symptoms for 4 weeks



38


Clinical Outcomes Pre and Post-treatment




Decrease in recurrent acute sinusitis with azithromycin prophylaxis

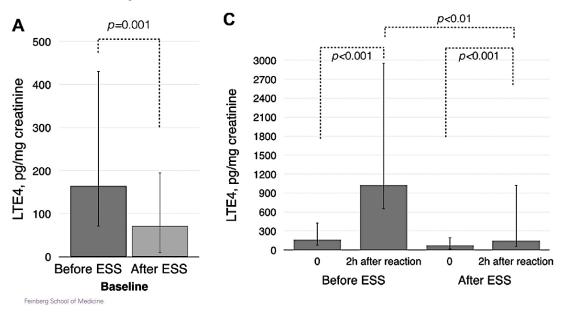
40

Can Surgery Target Type 2 Inflammation?

Sinus Surgery Is Associated with a Decrease in Aspirin-Induced Reaction Severity in Patients with Aspirin Exacerbated Respiratory Disease

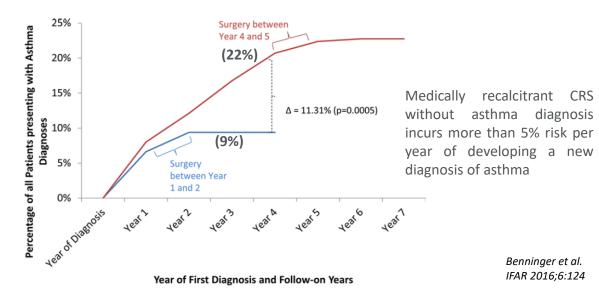
-	-	
1	6.0	
-		
10	pdate	

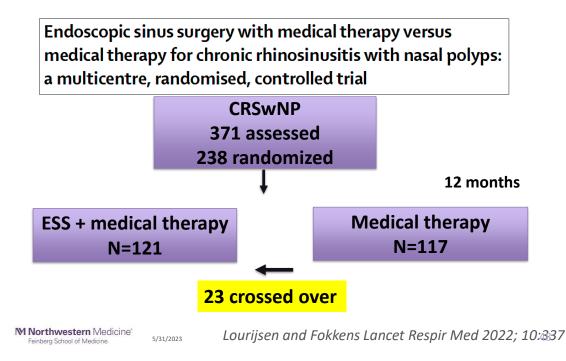
Elina Jerschow, MD, MSc^a, Matthew L. Edin, PhD^b, Yuling Chi, PhD^c, Beth Hurst, PhD^d, Waleed M. Abuzeid, MD^a, Nadeem A. Akbar, MD^a, Marc Gibber, MD^a, Marvin P. Fried, MD^a, Weiguo Han, PhD^c, Teresa Pelletier, MD^c, Zhen Ren, MD, PhD^e, Taha Keskin, MD^a, Gigia Roizen, MD^a, Fred B. Lih, BA^b, Artiom Gruzdev, PhD^b, J. Alyce Bradbury, MS^b, Victor Schuster, MD^a, Simon Spivack, MD^a, David Rosenstreich, MD^a, and Darryl C. Zeldin, MD^b *Bronx, NY; Research Triangle, NC; Ann Arbor, Mich; and St. Louis, Mo*

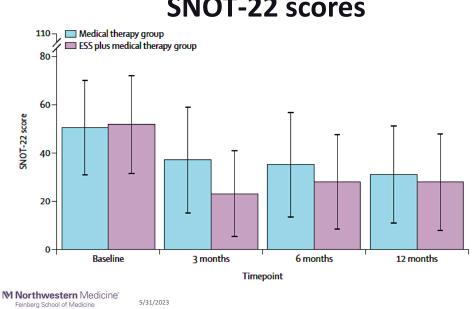

Morthwestern Medicine Feinberg School of Medicine

Results

After FESS: 12/28 (43%) with a hx of positive challenge did not not have any clinical symptoms during aspirin challenge and had a negative challenge


Pre and post FESS


- Decrease in eos from 0.7, (IQR 0.4-0.8 K/uL) to 0.3 (IQR 0.1-0.5 K/uL)
- Reaction to aspirin was less severe
 - FEV1 decrease: -10.0% (IQR -19.0 to -3.8) pre vs -8.6% (IQR -14.0 to -2.4 post, 0.02)



Urinary Leukotriene E4 Reduced After Surgery

Does Surgery have a Disease-Modifying Effect? New diagnosis of asthma based on time to surgery

SNOT-22 scores

Outcomes

	ESS + n ther		Medical	therapy	Adj outcomes
	Pre	Post	Pre	Post	
Nasal Symptoms (VAS)	79.0 (14.0)	31.5 (29.7)	74.0 (20.0)	45.5 (30.3)	-15.9 (- 24.0 to - 7.8)
NPS	5.9 (1.0)	2.2 (2.04)	5.7 (1.4)	3.83 (2.52)	-1.7 (-2.4 to -1.1)

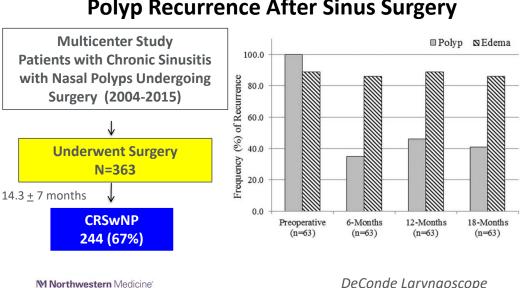
Morthwestern Medicine* Feinberg School of Medicine

5/31/2023

50

Outcomes

	ESS + n ther		Medical	therapy	Adj outcomes
	Pre	Post	Pre	Post	
EPOS control Uncontrolled	113 (96%)	<mark>46/100</mark> (46%)	112 (97%)	63/99 (64%)	
Anosmia	87 (74%)	54/100 (54%)	79 (68%)	49/95 (52%)	


Morthwestern Medicine* 5/31/2023

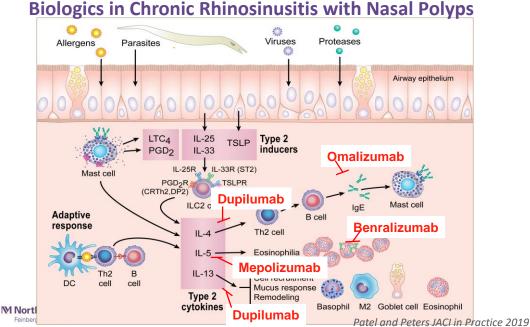
51

Post hoc analysis

- ESS+ medical therapy used 266mg (SD 505) prednisolone
- Med therapy: 587 mg (740); diff of 316 mg (95% CI -468 to -166)
- No difference in antibiotic use
- Many patients in both groups continued to have symptoms
- Limitations: not blinded, pre biologics

M Northwestern Medicine* 5/31/2023 Feinberg School of Medicine

Polyp Recurrence After Sinus Surgery


DeConde Laryngoscope 2017:127:550

einberg School of Medicine

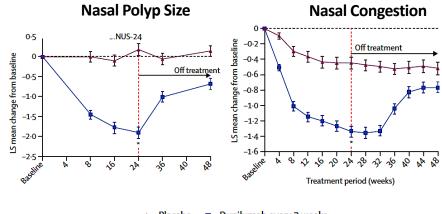
BIOLOGICS FOR CRS

M Northwestern Medicine* Feinberg School of Medicine

Biologics in Chronic Rhinosinusitis with Nasal Polyps

Should biologics, rather than no biologics, be used in chronic rhinosinusitis with nasal polyps (CRSwNP)?

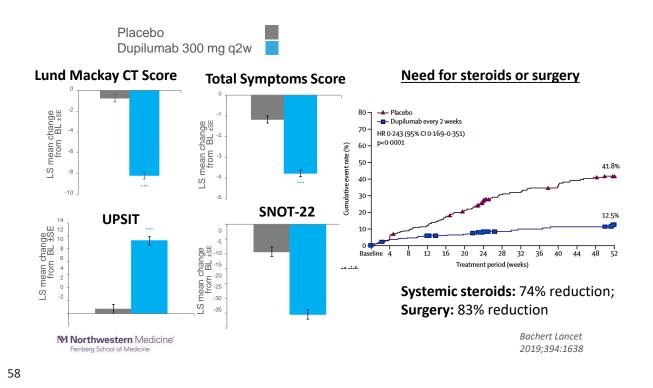
Statement	Strength of recommendation	Certainty of evidence
In people with CRSwNP, the guideline panel suggests biologics rather than no biologics	Conditional	Moderate

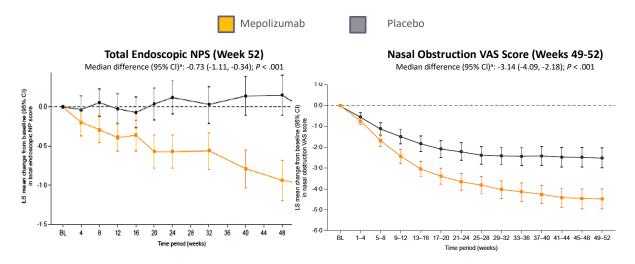

Why conditional: other options including INCS, surgery, or ATAD

The preference and values among different individuals are different

- For those who do ok with other therapies will not prefer biologics
- For patients with high disease burden, biologics may be preferred

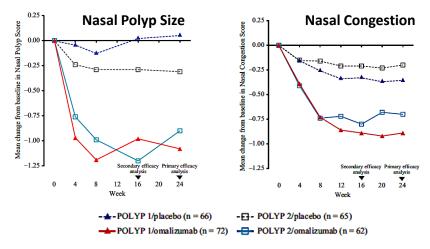
M Northwestern Medicine*


Dupilumab decreases polyp size and improves congestion


---- Placebo ---- Dupilumab every 2 weeks ----- Treatment ended at week 24

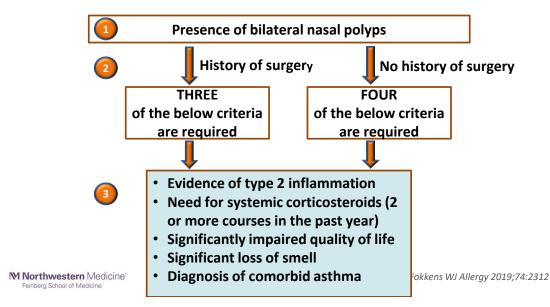
Morthwestern Medicine* Feinberg School of Medicine

Bachert et al. Lancet. 2019 Nov 2;394(10209):1638-1650.


Mepolizumab: SYNAPSE Results

StudY in NAsal Polyps patients to assess the Safety and Efficacy of mepolizumab

Han Lancet Respir Med 2021;9:1141


Omalizumab decreases nasal polyp size and nasal congestion

M Northwestern Medicine' Feinberg School of Medicine

Gaevert et al. J Allergy Clin Immunol. 2020 Jun 7;S0091-6749(20)30752-1.

EUFOREA Criteria for Considering Biological Treatment

			Patient-imp	ortant outcome	es		Surrogate	e outcomes	
	HRQoL SNOT-22 (0-110) [‡]	Symptoms VAS (0-10 cm)	Smell UPSIT (0-40) [†]	Rescue OCS	Rescue polyp surgery	Adverse events	Nasal polyp size (0-8)	CT score LMK (0-24)	
Standard care*	50.11	6.84	14.04	31.96%	21.05%	73.78%	5.94	18.35	
Dupilumab	-19.91 (-22.50, -17.3	-3.25 (-4.31, -2.18)	10.96 (9.75, 12.17)	-21.73 (-24.61, -18.22) RR 0.32 (0.23, 0.43)	-16.35 (-18.13, -13.48) RR 0.22 (0.14, 0.36)	0.13 (-8.12, 9.88) RR 1.00 (0.88, 1.13)	-2.04 (-2.73, -1.35)	-7.51 (-10.13, -4.8)	
Omalizumab	-16.09 (-19.88, -12.3	-2.09 (-3.15, -1.03)	3.75 (2.14, 5.35)	-12.46 (-23.65, 12.78) RR 0.61 (0.26, 1.40)	-7.40 (-11.04, -2.43) RR 0.65 (0.48, 0.88)	-2.60 (-15.58, 13.28) RR 0.96 (0.79, 1.18)	-1.09 (-1.70, -0.49)	-2.66 (-5.70, 0.37)	
Mepolizumab	-12.89 (-16.58, -9.19	-1.82 (-3.13, -0.50)	6.13 (4.07, 8.19)	-10.23 (-15.98, -2.88) RR 0.68 (0.50, 0.91)	-12.33 (-15.56, -7.22) RR 0.41 (0.26, 0.66)	-3.07 (-13.44, 9.07) RR 0.96 (0.82, 1.12)	-1.06 (-1.79, -0.34)		
Benralizumab	-7.68 (-12.09, -3.2	-1.15 (-2.47, 0.17)	2.95 (1.02, 4.88)	-9.91 (-16.30, -0.96) RR 0.69 (0.49, 0.97)	-2.53 (-9.05, 7.16) RR 0.88 (0.57, 1.34)	-1.48 (-13.28, 12.54) RR 0.98 (0.82, 1.17)	-0.64 (-1.39, 0.12)	-1.00 (-3.83, 1.83)	
Reslizumab					-18.82 (-20.93, 20.56) RR 0.11 (0.01, 1.98)	-2.55 (-19.49, 19.18) RR 0.97 (0.74, 1.26)			
AK001		3				2.54 (-27.11, 51.03) RR 1.03 (0.63, 1.69)	-0.20 (-1.61, 1.21)		
Etokimab	-1.30 (-8.99 to 6.4)	0)				188.14 (-59.76, 4879.1) BR 3.55 (0.19, 67.13)	-0.33 (-1.58, 0.92)		
Classification	of intervention	on (colour) ²⁴					Certainty (sh	nading) ^{24, 29}	
Among most be	eneficial A	Among intermedia	te beneficial	Among least	Among least beneficial/not No d		High/moderat		
Among most harmful Among intermediate harmful			clearly differ	clearly different from placebo (blank)			Low/very low (shaded)		

Questions for use of biologics in CRS with Polyps

Consider before or with surgery

- Severe asthma
- AERD
- Surgical failures
- Poor surgical candidates
- Other comorbidities

Not clear when to use

- Polyp without asthma
- Use after surgical failures?
- When and for how long?
- Immediately post-op to prevent recurrences in high risk patients?
- Costs are a huge issue
- Duration of use not known

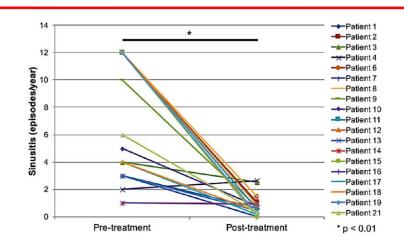
No Biomarkers

ENDOTYPE-BASED THERAPY FOR CRS

THERAPY FOR CRS

Steroids
Antibiotics
Surgery
Biologics
IgG therapy

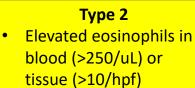
M Northwestern Medicine*


Prevalence of Immunodeficiency in CRS Jan 2010-Feb 2013

Immune Status	Patients
CVID	35 (5.9%)
Specific antibody deficiency	144 (24.2%)
IgA deficiency	16 (2.7%)
No abnormalities	402 (67.6%)
Total	595

Morthwestern Medicine* Feinberg School of Medicine

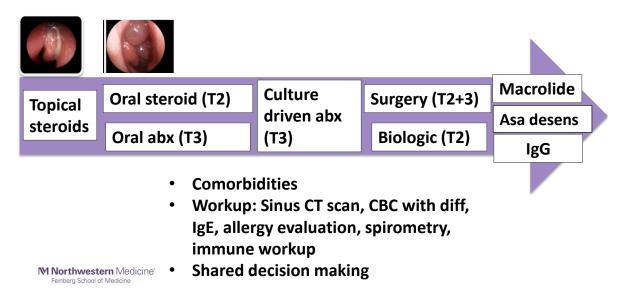
Keswani et al. JACI in practice 2017


Immunoglobulin Replacement Reduces CRS Exacerbations and Antibiotic Courses

M Northwestern Medicine*

Walsh et al. IFAR 2016

How to measure endotype clinically?


- Elevated IgE
- Presence of asthma, allergic rhinitis, or nasal polyps

Morthwestern Medicine* Feinberg School of Medicine

Type 1 or 3

- Elevated neutrophils in blood or tissue
- Low eosinophils
- Low IgE
- Low IgG (<500)
- Presence of CRSsNP

How we think about severe CRS

Acknowledgements

Northwestern Sinus and Allergy Center

Roderick Carter, BS David Conley, MD Leslie Grammer, MD Atsushi Kato, PhD James Norton, MS Whitney Stevens, MD PhD Robert Kern, MD Amina Guo, BS Lydia Suh, BS Bruce Tan, MD Robert Schleimer, PhD Stephanie Shintani-Smith, MD Kevin Welch, MD

Chronic Rhinosinusitis Integrative Studies Program

Morthwestern Medicine® Feinberg School of Medicine

Thank You!!

M Northwestern Medicine* Feinberg School of Medicine

5/31/2023

74th PAAA Annual Meeting

JUNE 23-25, 2023 The Hotel Hershey, Hershey, PA

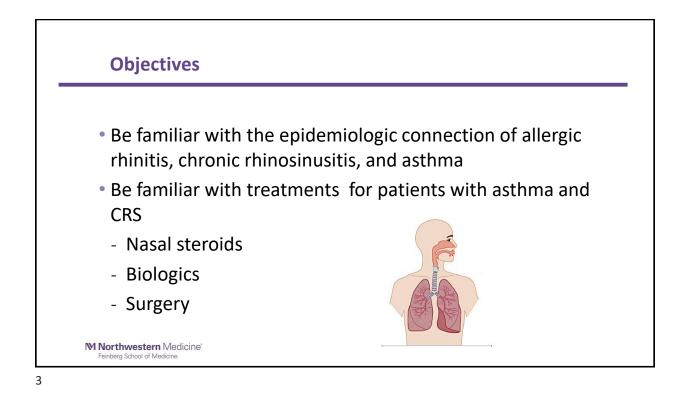
United Airways: The Clinical Impact of Upper and Lower Airway Connection

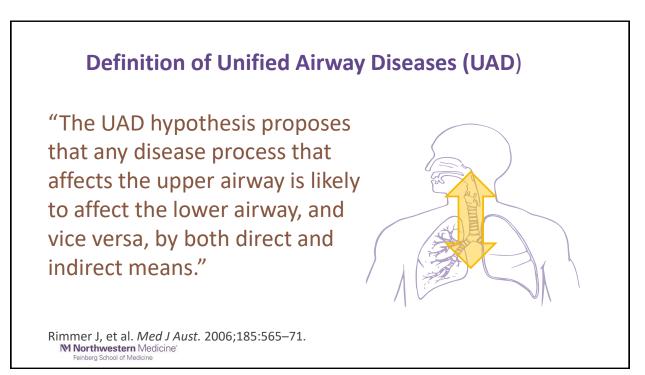
Presented by: Anju Peters, MD, MSCI

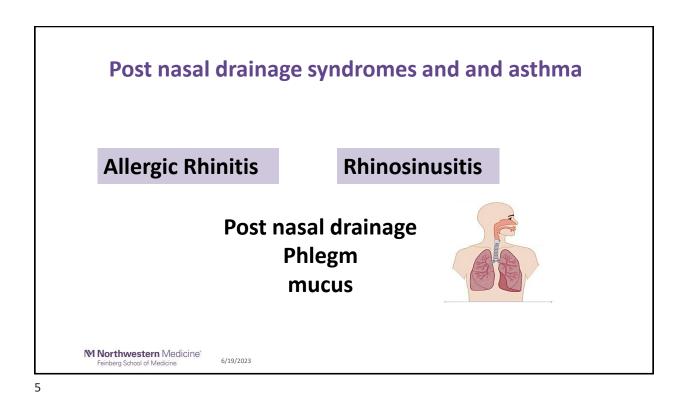
Sunday, June 25, 2023 8:30 a.m. – 9:15 a.m. Morthwestern Medicine* Feinberg School of Medicine

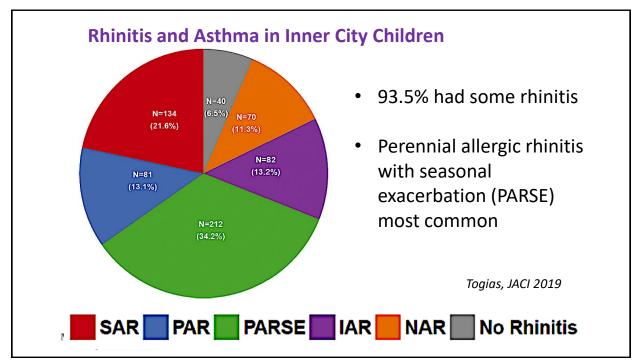
Unified Airways: The Clinical Impact of Upper and Lower Airway Disease

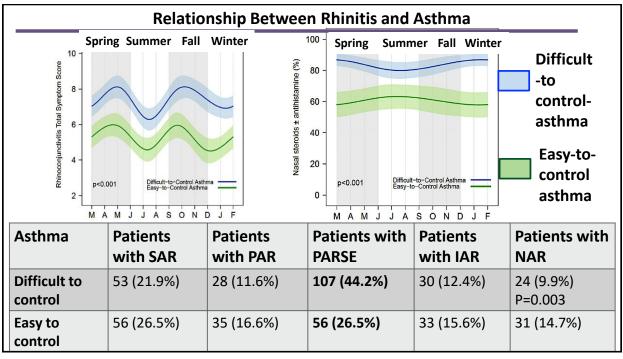
Anju T Peters, MD MSCI


Professor of Medicine


Director of Clinical Research, Division of Allergy-Immunology Medical Director, Northwestern Medicine Clinical Research Un Northwestern University Feinberg School of Medicine


Disclosures


- Research Support
 - Sanofi Regeneron
 - AstraZeneca
 - CRISP (PO145818/AI/NIAID)
- Consulting
 - AstraZeneca
 - Sanofi Regeneron
 - Optinose
 - GSK


M Northwestern Medicine* Feinberg School of Medicine

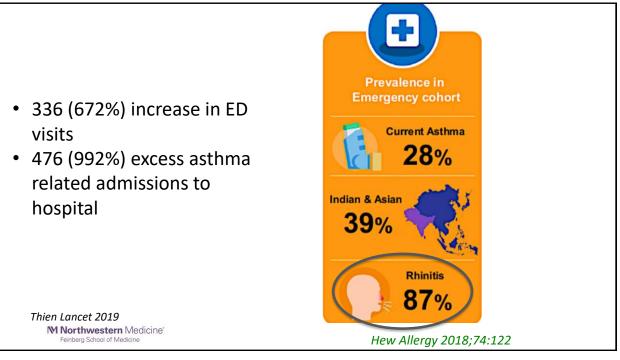
Asthma: 4,754 patients, 10,111 encounters

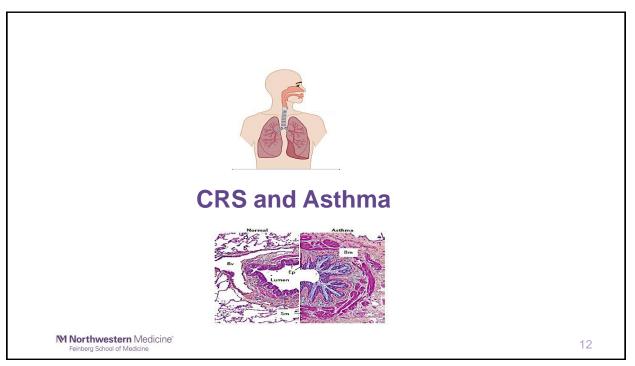
Median follow-up time: Asthma: 980 (+760) days, 18% readmitted

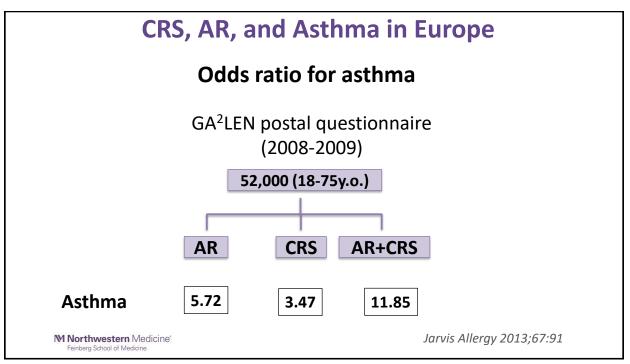
Comorbid	lity	Comparisor	h Hazard	95% H	IR CI	P-
		groups	ratio (HR)			value
	Allergic		4.4	3.9	5.0	_
Chronic		Yes vs. No	β.7	2.9	4.9	< 0001
Rhinitis	Non-					N.0001
	Allergic					
	stern Medicine [*] ol of Medicine	S	ingh J Allergy Clin Im	munol In Pr	actice; 2	2018

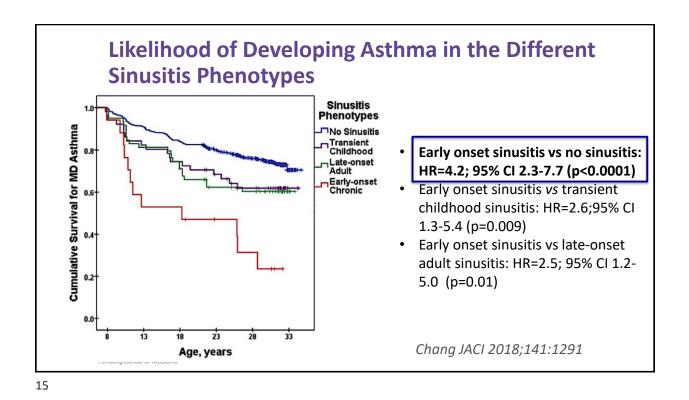
Thunderstorm asthma: Ninth death in Victoria after freak weather event in 2016 ABC News

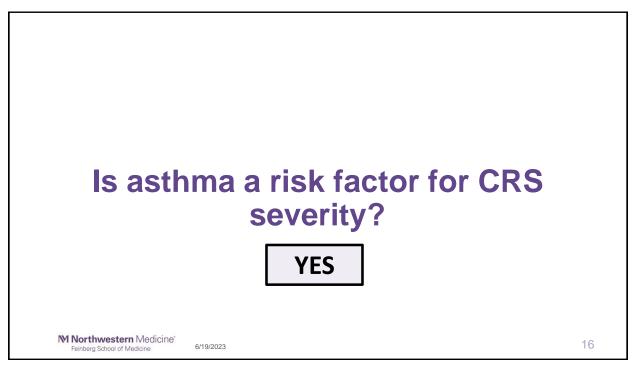
Updated 24 Jan 2017, 10:36pm

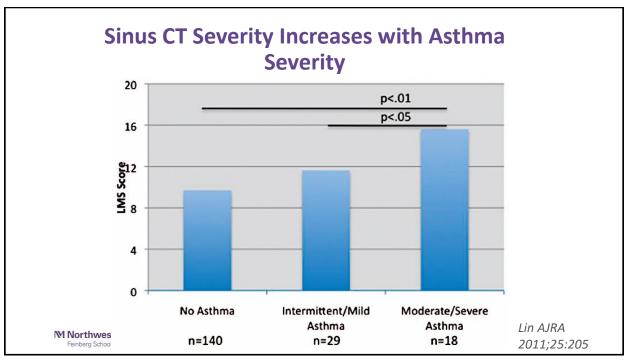

RELATED STORY: Victorian coroner to investigate thunderstorm asthma deaths

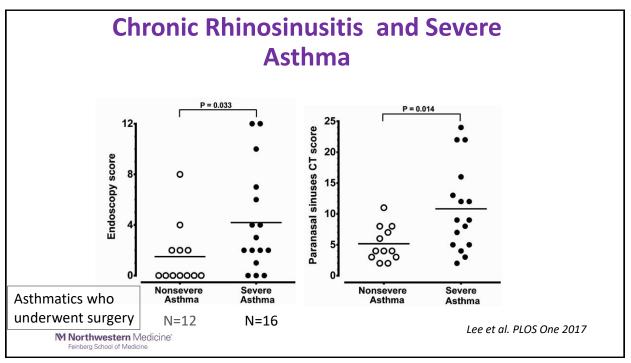

8,500 people sought hospital treatment when the weather changed abruptly on November 21, as a cool change and thunderstorms swept across Melbourne.

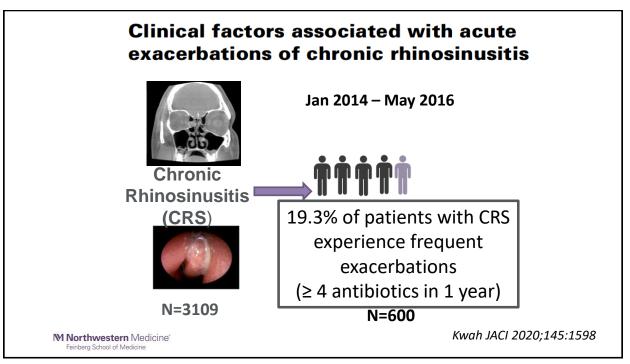

95% of those that were affected by thunderstorm asthma had a history of hay fever -96% positive to grass pollen (rye grass)

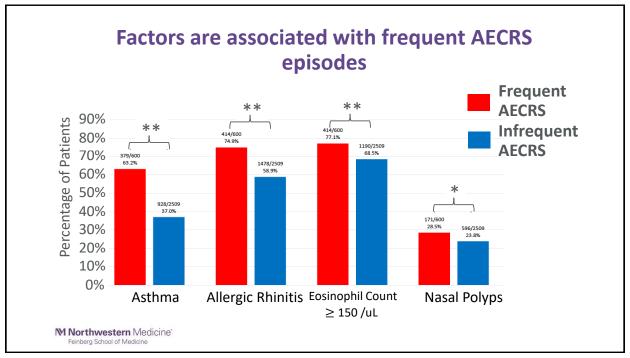

Asthma and	treatme	ent of rhinitis with	nasal steroids
Frequency (rate per 10	0 person-y	/ears) of asthma related	ED visits
Nasal steroid (+)	Nasal steroid (-)	
N=2276		N=11,568	
98 (4.3)		933 (8.1)**	**P<0.0001
Adjusted RR for as	thma rela	ted ED visit INS prescript	ion
Dispensing rate of INS	N	RR	
0	11,568	1.0	
1	1511	0.74(0.57-0.99) p·	<0.05*
>3	242	0.50 (0.23-1.05), p	b=0.07
M Northwestern Medicine* Feinberg School of Medicine		Adams J	ACI 2002,109:636

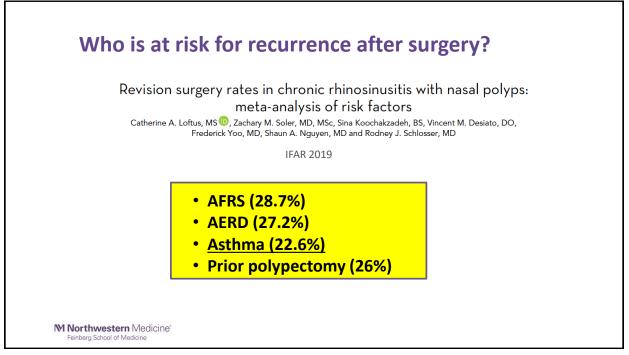


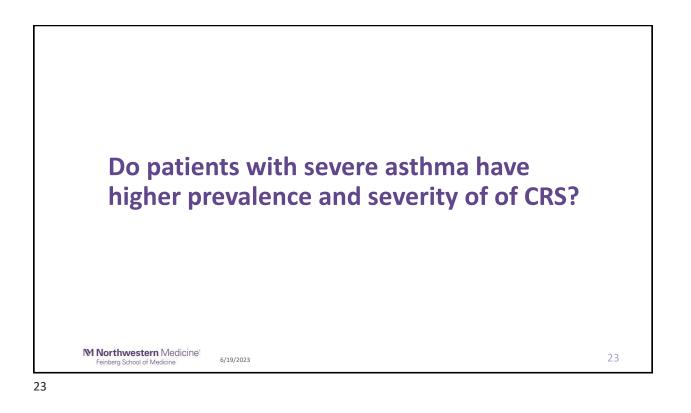


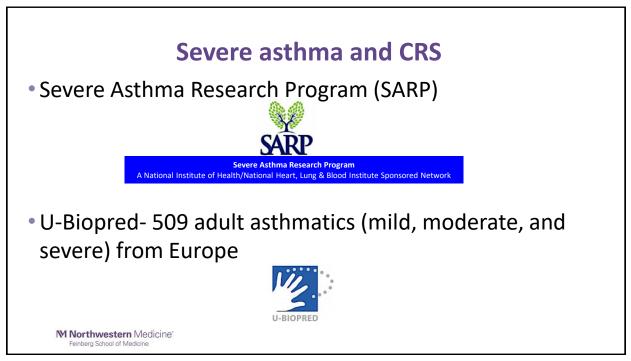


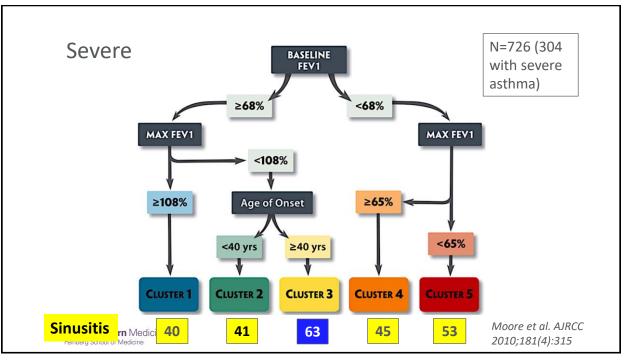

Clinical Characteristics Benjamin JACI in Practice 2019;7:1010	s of Chronic Rh	inosinusitis	
	CRSsNP (n = 507)	CRSwNP (n = 874)	p value
Mean Age (yrs ± SD)	50.77 ± 14.21	50.35 ± 14.42	0.59
Female Sex - no. (%)	319 (63)	393 (45)	<0.0001
Asthma – no. (%)	183 (36)	490 (56)	<0.0001
Allergic Rhinitis – no. (%) *	216 (52)	521 (76)	<0.0001
FEV1 Percent Predicted, Pre- bronchodilation (mean ± SD) +	83.17 ± 20.51	83.60 ± 17.92	0.76
Number of Sinus Surgeries – (mean ± SD)	0.94 ± 0.97	1.42 ± 1.56	<0.0001
Feinberg School of Medicine			

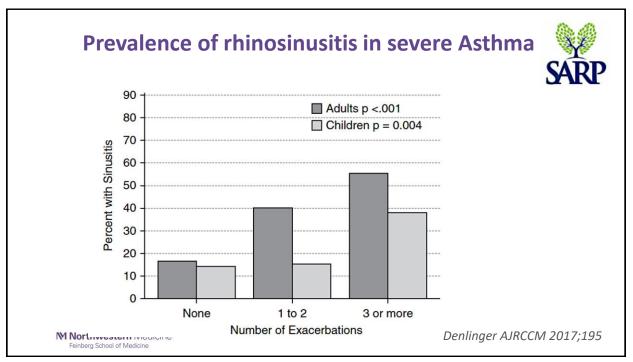


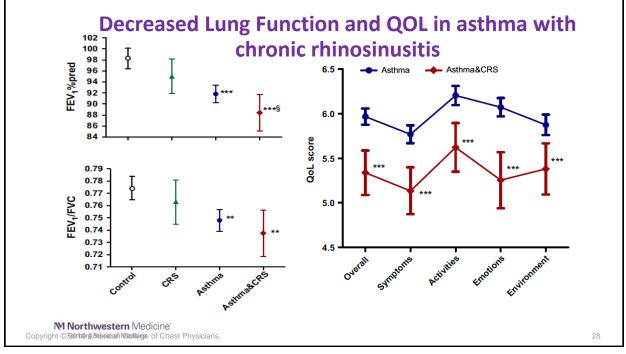


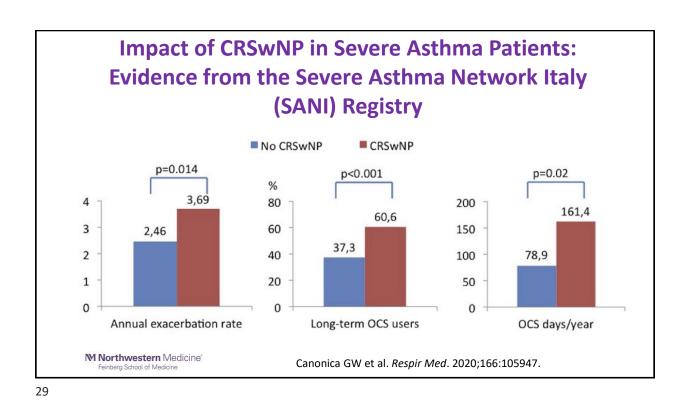


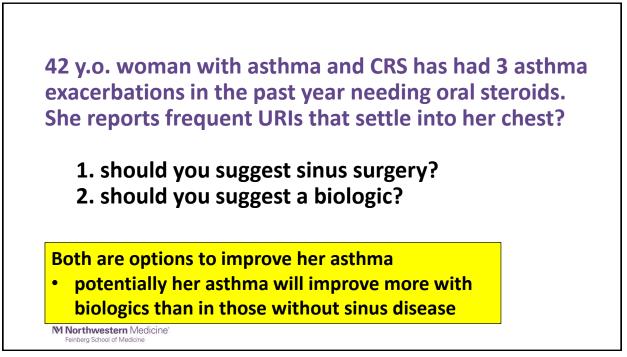


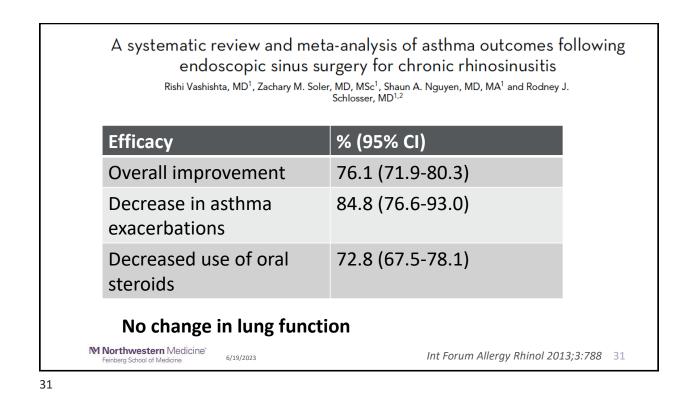


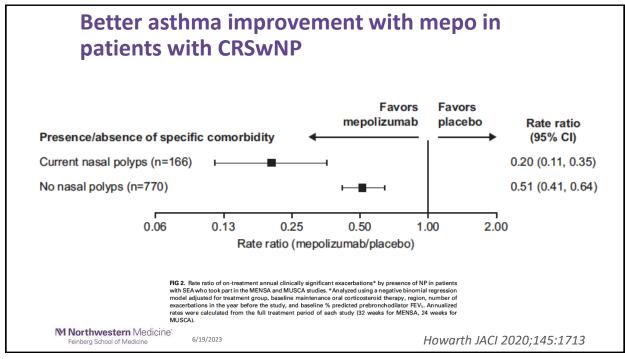

Variable	Adjusted odds ratio	95% CI
Vallable	Aujusteu ouus latio	3370 01
Asthma	2.61	2.14-3.18
Allergic rhinitis	1.96	1.58-2.42
Eosinophil count	1.54	1.21-1.97
≥150/µL		
Autoimmune disease	1.68	1.36-2.07

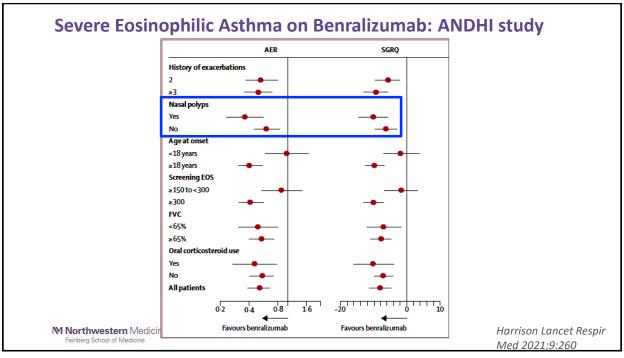


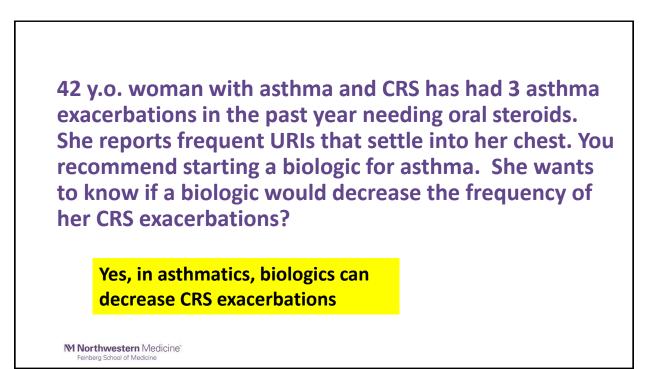


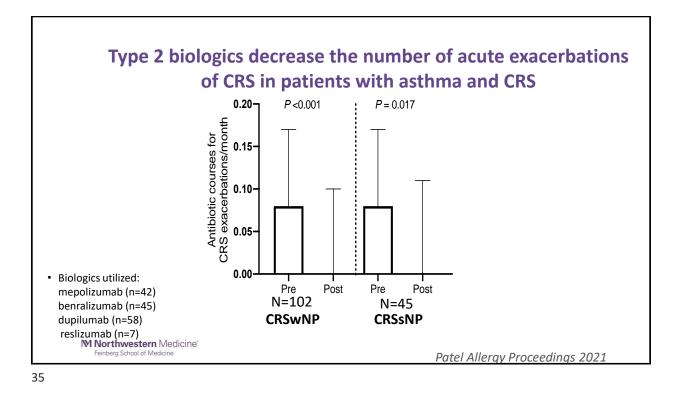


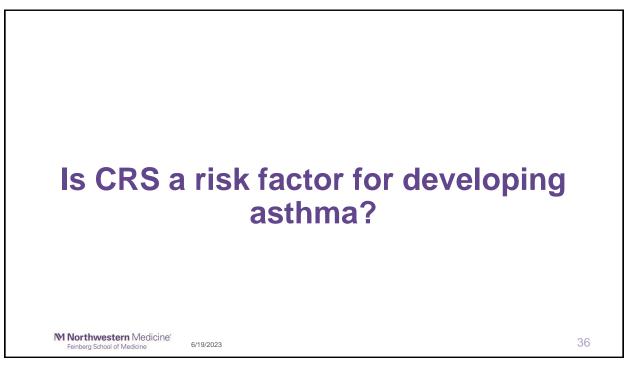


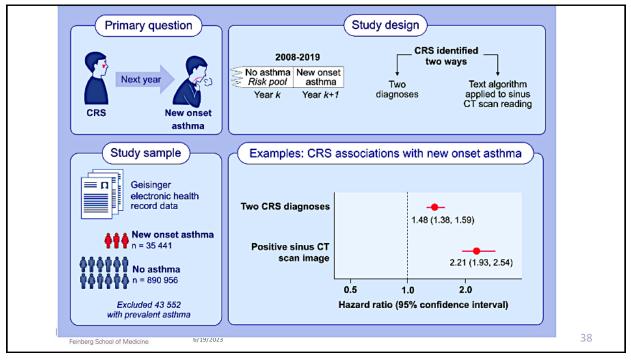

severe ast	hma cohort		aw et al. Eur Resp J 15;46:1227
	Severe nonsmoking	Mild/moderate nonsmokers	Healthy nonsmoking controls
FEV1 % pred	67.5	89.5	101.7
Allergic rhinitis dx (%)	59.2	60	16.7
SNOT 20	31.8	15.4	
Nasal polyp dx (%)	35.4	9.2	8.8

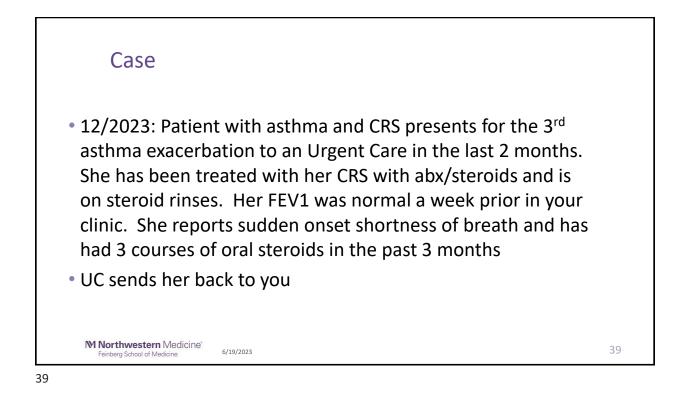


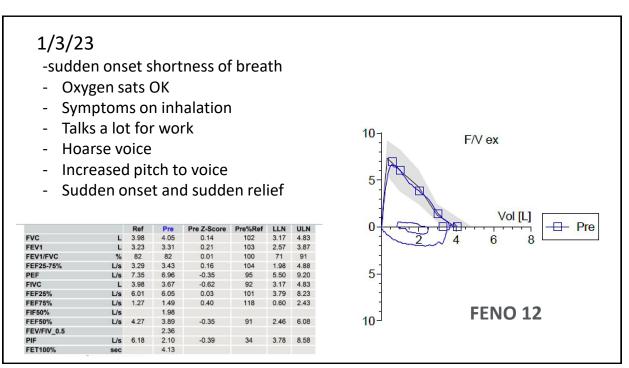


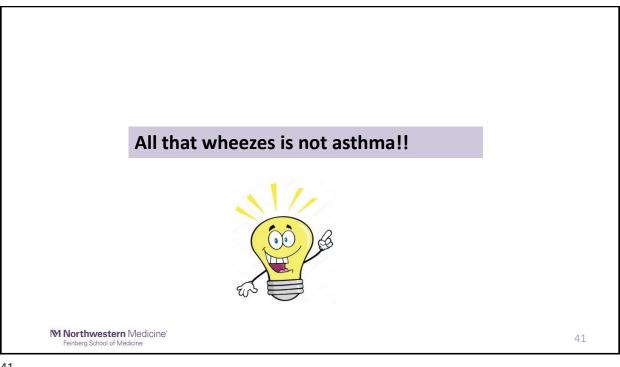


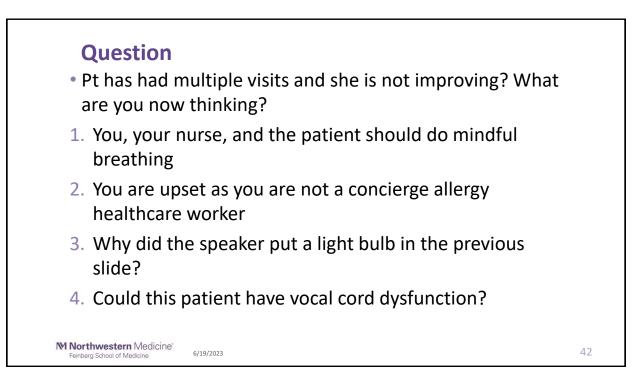


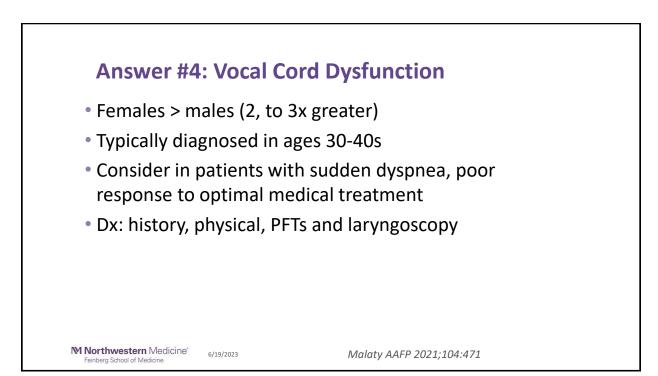


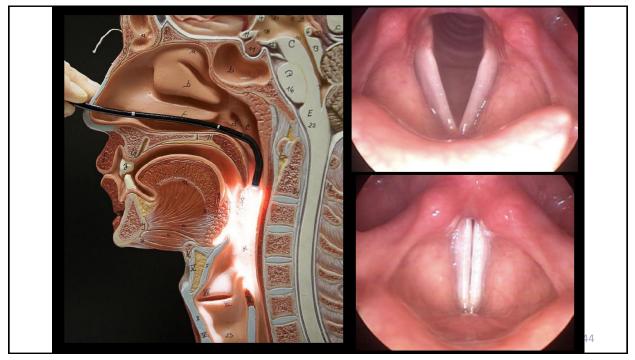


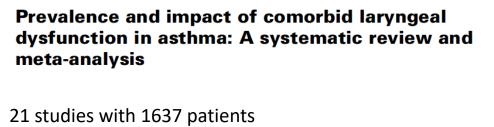



Received: 22 February 2023	Revised: 12 April 2023	3 Accepted: 26 April 2023
ORIGINAL ARTIC	LE	
		nd chronic rhinosinusitis are associated w onset asthma in the following year
with a diagn Brian S. Schwartz Annemarie G. Hirs	osis of nev ^{1,2} © Jonatha sch ² © Ashto	



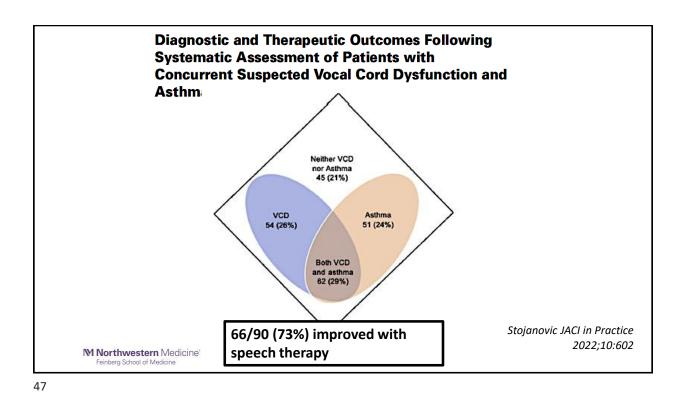


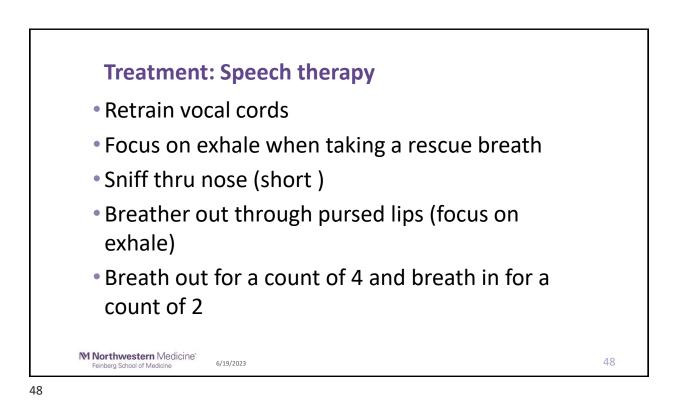


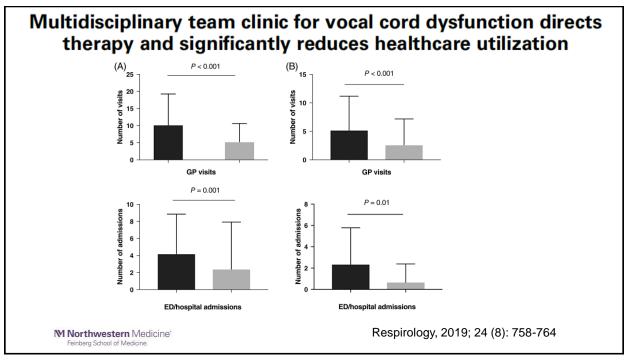


Laryngeal pathologies that may mimic asthma

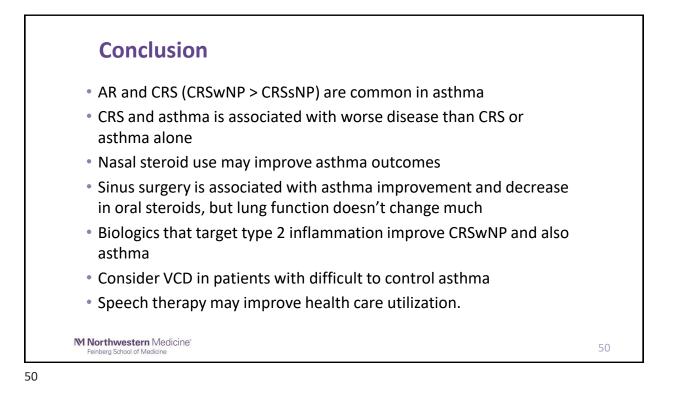
- Foreign body obstruction
- Airway malacia
- Infection
 - history
- Masses
- Vocal cord dysfunction
- Habit cough
- Idiopathic suglottic stenosis
- Tracheal stenosis


- Dysphagia
- Stridor
- Abnormal voice or cry
- Shortness of breath (not responding to therapy)
- Diagnostic workup
 - Bronchoscopy
 - CT scans


45



Queried for VCD, laryngospasm, paradoxic vocal fold movement, and inducible laryngeal obstruction (ILO) -25% had laryngeal dysfunction -more common in severe asthma


Lee JACI 2020;145:1165

Acknowledgements

Northwestern Sinus and Allergy Center

Roderick Carter, BS David Conley, MD Leslie Grammer, MD Atsushi Kato, PhD Robert Kern, MD James Norton, MS Whitney Stevens, MD PhD Amina Guo, BS Caroline Price, BA Lydia Suh, BS Katie Hulse, PhD Bruce Tan, MD Robert Schleimer, PhD Stephanie Shintani-Smith, MD Kevin Welch, MD

Chronic Rhinosinusitis Integrative Studies Program P01 AI145818/AI/NIAID

M Northwestern Medicine® Feinberg School of Medicine

74th PAAA Annual Meeting

JUNE 23-25, 2023 The Hotel Hershey, Hershey, PA

The Psychosocial Impact of Food Allergies: What Every Allergist Should Know

Presented by: Hemant Sharma, MD, MHS

> Sunday, June 25, 2023 9:45 a.m. - 10:30 a.m.

The Psychosocial Impact of Food Allergies: What Every Allergist Should Know

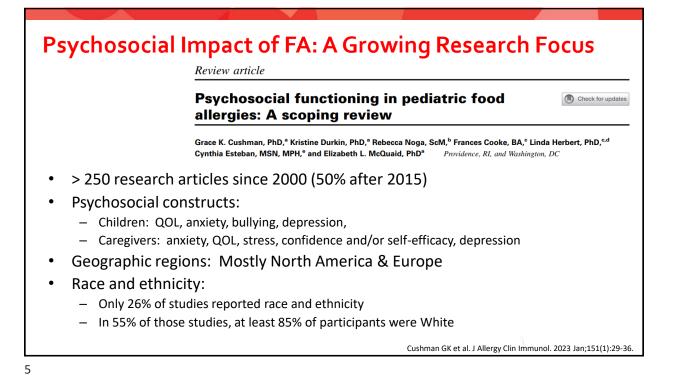
Hemant Sharma, MD, MHS

Division of Allergy and Immunology Children's National Hospital

Disclosures

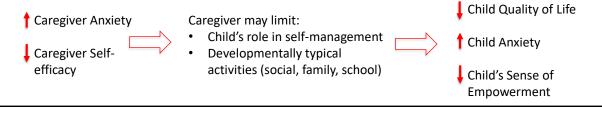
Research Support:

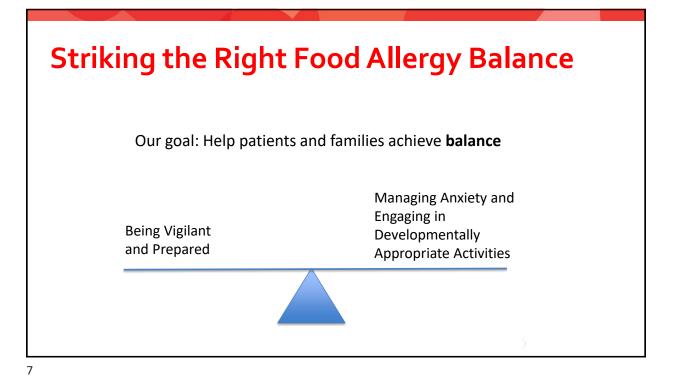
- NIAID
- DBV Technologies
- Aimmune Therapeutics


Objectives

- 1. Review **common psychosocial challenges** experienced by patients with food allergies and their caregivers.
- 2. Discuss how allergists-immunologists may assess for psychosocial concerns.
- 3. Consider indications for **referring to a mental health professional** and models for **co-management**.
 - Understand need for increased access to mental health services for patients with food allergy.

Food Allergy-Related Psychosocial Concerns


- Key psychosocial concerns among patients with food allergies and their caregivers/families:
 - Stress related to food allergy management
 - Reduced health-related quality of life
 - Anxiety, fear, worry re:
 - Unpredictable nature of allergic reactions
 - Diagnostic procedures
 - Treatments
 - After allergic reactions
 - Bullying



- Food allergy management is mostly preventative, not active medical care
- Primary drivers of psychosocial concerns:
 - Daily anxiety
 - Fear about unpredictability of reactions
 - Threat of life-threatening consequence
- Potential impact:

Key Periods of Food Allergy Adjustment

- The first allergic reaction
- Diagnosis
- Initial food allergy management
- Stable disease management periods
- Cycles of uncertainty
 - Allergic reactions
 - New allergies/information
 - Oral food challenges
 - Food reintroduction
 - Developmental changes
 - Transitions
- Treatments (immunotherapy)

Psychosocial Concerns by Developmental Stage: Early Childhood

- Caregivers are necessarily responsible for food allergy management at this age
- Caregivers commonly experience anxiety about their ability to keep child safe
- Specific caregiver concerns:
 - Introduction of new foods
 - Monitoring for reactions in preverbal child who cannot describe symptoms
 - Concerns for exposures related to frequent mouthing behaviors at this stage

Herbert L, Shemesh E, Bender B. J Allergy Clin Immunol Pract 2016;4:205-13 LeBovidge JS, Herbert LJ, Ramos A, at al. J Allergy Clin Immunol Pract. 2022 Oct;10(10):2552-2558.

9

Psychosocial Concerns by Developmental Stage: Early Childhood

- Caregiver Stress and Social Limitations
 - Most food allergic reactions in this age occur when eating away from home
 - In study of parents of children diagnosed for <1 year:
 - Most avoided restaurants
 - Half restricted social activities with other children and/or travel
 - Some reduced work hours due to food allergy
- Highly involved parenting practices
 - Caregiver may attend social activities with child beyond the age other parents do
 - Children with food allergy may exhibit more separation anxiety

Herbert L, Shemesh E, Bender B. J Allergy Clin Immunol Pract 2016;4:205-13 LeBovidge JS, Herbert LJ, Ramos A, at al. J Allergy Clin Immunol Pract. 2022 Oct;10(10):2552-2558.

Psychosocial Concerns by Developmental Stage: School-Aged Children

- Children assume more responsibility at this age
- **Caregiver anxiety** related to transitions (school entry) that require reliance on third parties and greater child self-management
- Perceptions of risk and safety shift around age 8-9 years
 - Previously tolerated situations may now be sources of anxiety and stress. Why?
 - Child has greater cognitive awareness of risks
 - Misperceptions about level of risk with casual allergen contact
 - Child has more independence in food allergy management

Herbert L, Shemesh E, Bender B. J Allergy Clin Immunol Pract 2016;4:205-13

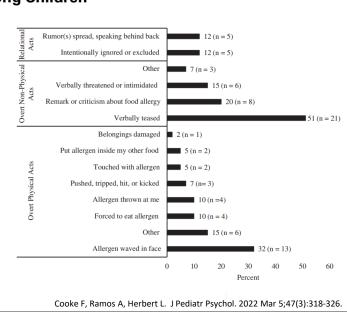
Psychosocial Concerns by Developmental Stage: School-Aged Children

- Child Anxiety
 - Children who perceive greater illness severity have greater psychosocial concerns
 - Fear of death with allergen exposure outweighs objective risk
 - Perceived history of anaphylaxis and vivid memories related to more anxiety and greater impact on daily life
- Children have greater awareness of differences from peers due to food allergy
 - Management should emphasize both safety and social inclusion to foster confidence
- Food allergy-related Bullying

Herbert L, Shemesh E, Bender B. J Allergy Clin Immunol Pract 2016;4:205-13 LeBovidge JS, Herbert LJ, Ramos A, at al. J Allergy Clin Immunol Pract. 2022 Oct;10(10):2552-2558.

Food Allergy-Related Bullying

- Based on a 2013 study, 35-45% of children with FA have experienced food allergy-related bullying or teasing, mostly during school by classmates
 - 3/4 reported continued bullying one year later
- Children with FA twice as likely to be bullied compared to those without
- 49% of parents unaware of bullying experienced by their child
- Children who are bullied and their parents report decreased quality of life, even after accounting for illness severity


Herbert L, Shemesh E, Bender B. J Allergy Clin Immunol Pract 2016;4:205-13 Bingemann T et al. J Allergy Clin Immunol Practice 2019

13

Food Allergy-Related Bullying Among Children and Adolescents

Frances Cooke (0,¹ BA, Ashley Ramos (0,^{1,2} PHD, and Linda Herbert,^{1,2} PHD

- A 2022 study found prevalence of bullying differed by assessment method:
 - Single-item (yes/no): 17%
 - 6-item: 31%
- Disagreement between parent and child report: 12% of parents reported child had been bullied due to FA
 - 14% of parents reported they were teased due to child's FA
- School setting
 - Classmates, as well as teachers and school staff

Food Allergy-Related Bullying Among Children and Adolescents

Frances Cooke (0),¹ BA, Ashley Ramos (0),^{1,2} PHD, and Linda Herbert,^{1,2} PHD

- Potential impact of FA bullying:
 - Poor psychosocial outcomes (sadness, anxiety, low self-esteem)
 - May be directly dangerous
 - Indirectly dangerous as child may be less likely to:
 - Disclose FA to others and therefore not get help when needed
 - Engage in important FA management behaviors
- What can Allergy clinicians do?
 - Ask both child and parent
 - Ask about FA bullying in multiple ways
 - Ask open-ended questions about peer experiences

Cooke F, Ramos A, Herbert L. J Pediatr Psychol. 2022 Mar 5;47(3):318-326.

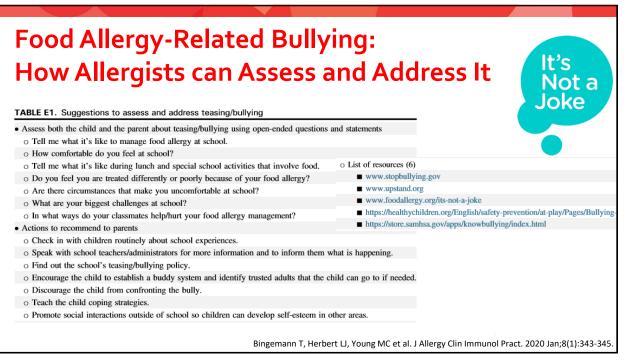

Food Allergy-Related Bullying: Assessment by Allergists

TABLE I. Asking about teasing/bullying in pediatrics patients with food allergy during clinic visits

Question	All of the time, % (I		e of the , % (N)	Rarely, % (N)	Never, % (N)
Do you ask patients about teasing/bullying during your clinic visits?	8.3% (8 of	96) 49.0%	(47 of 96)	26.0% (25 of 96)	16.7% (16 of 96
Do you ask parents/guardians whether their children experience teasing/bullying during your clinic visits?	7.4% (7 of	94) 45.7%	(43 of 94)	29.8% (28 of 94)	17.0% (16 of 94
Do you ask patients whether they experience teasing/bullying during your clinic visits?	7.3% (7 of	96) 40.6%	(39 of 96)	30.2% (29 of 96)	21.9% (21 of 96)
Question	Very comfortable, % (N)	Somewhat comfortable, % (N)	Neutral, % (N)	Somewhat uncomfortable, % (N)	Very uncomfortable, % (N
How comfortable do you feel asking parents/guardians and patients about teasing/bullying?	42.7% (41 of 96)	31.3% (30 of 96)	19.8% (19 of 96)	5.2% (5 of 96)	1.0% (1 of 96)
How comfortable do you feel in helping patients and families appropriately address teasing/bullying concerns?	21.9% (21 of 96)	42.7% (41 of 96)	14.6% (14 of 96)	19.8% (19 of 96)	1.0% (1 of 96)

Barriers: Lack of time, knowledge and resources

Bingemann T, Herbert LJ, Young MC et al. J Allergy Clin Immunol Pract. 2020 Jan;8(1):343-345.

Psychosocial Concerns by Developmental Stage: Adolescence

- Food allergy management transitions from parent to child

 Families must negotiate who is responsible for each management task based on child's readiness
 - Continued caregiver support needed (planning, problem-solving)

• Poor Adherence & Risk-taking Behaviors

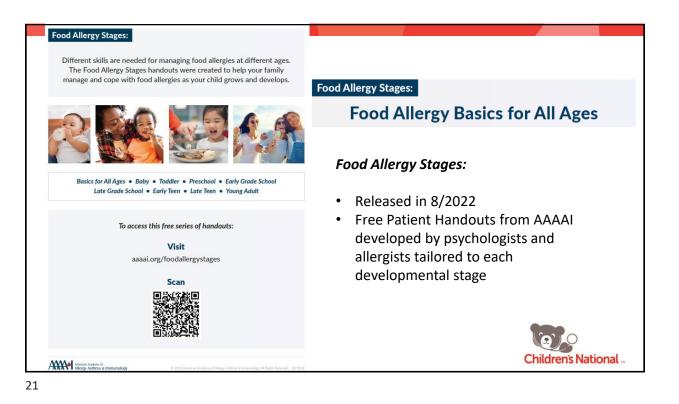
- Many adolescents cannot identify anaphylaxis or when to use epinephrine, purposefully ingest allergens, and do not always carry epinephrine autoinjectors (EAIs)
- Why?
 - · Concerns about fitting in, feeling embarrassed, or being teased
 - EAI device size/convenience
 - Perception of low risk based on behavior (ie not planning to eat)
 - · Uncertainty about anaphylaxis symptoms and how/when to use EAI

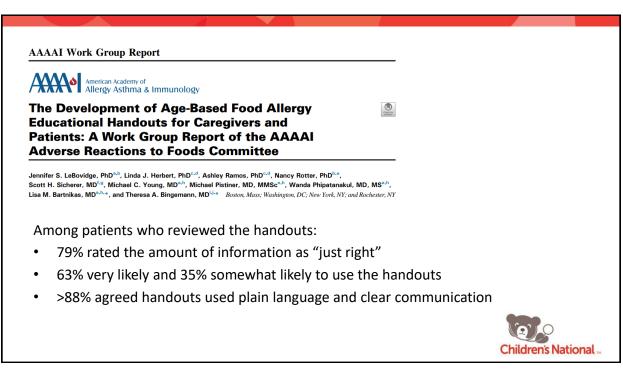
Herbert L, Shemesh E, Bender B. J Allergy Clin Immunol Pract 2016;4:205-13 LeBovidge JS, Herbert LJ, Ramos A, at al. J Allergy Clin Immunol Pract. 2022 Oct;10(10):2552-2558.

Psychosocial Concerns by Developmental Stage: Adolescence

- New situations pose safety issues (romantic relationships, exposure to drugs and alcohol)
- Greater Risk
 - Many anaphylactic reactions and most fatal reactions occur during adolescence and young adulthood
 - More than 2/3 of adolescents with FA experienced an allergic reaction in past 5 years
- Peer Influence
 - Epinephrine carriage varies by social activity, location and perceived peer norms
 - Teens want their peers to know about their FA, but are reluctant to be the ones to
 educate

Herbert L, Shemesh E, Bender B. J Allergy Clin Immunol Pract 2016;4:205-13 LeBovidge JS, Herbert LJ, Ramos A, at al. J Allergy Clin Immunol Pract. 2022 Oct;10(10):2552-2558.


19


Psychosocial Concerns by Developmental Stage: Early Adulthood

- Patient has primary responsibility for day-to-day food allergy management
- Patient should understand how to manage food allergies in shared living situations, college, workplace and romantic relationships
- Patient must understand how to manage own health care (scheduling medical appointments, filling prescriptions, understanding insurance, coverage and copayments)

Herbert L, Shemesh E, Bender B. J Allergy Clin Immunol Pract 2016;4:205-13 LeBovidge JS, Herbert LJ, Ramos A, at al. J Allergy Clin Immunol Pract. 2022 Oct;10(10):2552-2558.

TABLE I. Common psychosocial food allergy-related questions that parents may ask	
Early childhood	
How do I	 Tips for Allergy Providers:
teach my child about food allergy in a developmentally appropriate way?	
teach other caregivers about food allergy and encourage them to take it seriously?	 Many families will benefit simply from provider listening, and discussing that feelings are
help my child safely participate in activities outside the home?	
School-aged children	normal and they will adjust over time
How do I	
teach my child about food allergy without scaring him?	
help my child cope with food allergy-related anxiety?	 Referral to local support groups: Meeting othe
help my child navigate peer situations that include food?	families and social support can facilitate health
help my child who is being bullied for her food allergies?	adjustment
support my child's overall self-worth?	aujustment
Adolescence	
How do I	Educational materials. To supplement works!
successfully transition food allergy management responsibility from me to my child?	 Educational materials: To supplement verbal communication
impress the seriousness of allergen avoidance/epinephrine carriage on my child?	
encourage my child to disclose his food allergy to peers?	
help my child navigate peer situations in which she may experience peer pressure?	
help my child cope with food allergy-related anxiety?	
prepare my child for college/living on her own?	Herbert L, Shemesh E, Bender B. J Allergy Clin Immunol Pract 2016;4:205-13

The Food Allergy Parent Mentoring Program: A Pilot Intervention

Ashley Ramos (b),^{1,2} PHD, Frances Cooke,¹ BA, Emily Miller,¹ BS, and Linda Herbert,^{1,2} PHD

- Parents of young children with newly diagnosed food allergy (FA) paired with an experienced parent of an older child for 6 months
- Mentors communicated with mentees at least 2 times per month (via inperson meetings, phone, text, email)
- Mentees reported high acceptability for the intervention
- Improvements observed in social support, FA-related stress, confidence in FA management, and positive changes in FA parenting behaviors

Ramos A, Cooke F, Miller E, Herbert L. J Pediatr Psychol. 2021 Aug 11;46(7):856-865.

		rood anergy management		
Questions Medical		Who is responsible for allergen avoidance when you are at home/not at home?		
		Who is responsible for epinephrine carriage when you are not at home?		
Pr	roviders Can Ask	Do you and other caregivers agree on how to manage your child's food allergies?		
		Do you have concerns about your family's ability to manage your child's food allergies?		
• Tips for Allergy Providers:		Do you have any concerns about your child's food allergy management at day care/school?		
		Does your child feel safe during lunch/snacks?		
		Peer experiences		
-	Open-ended questions	Does your child ever say that he is left out or teased because of food allergies?		
-	Ask both parent and child	Does your child ever not want to participate in social activities because of food allergies?		
	Developmentally engrangiste	Emotional aspects of food allergies		
-	Developmentally appropriate	Has your family ever not participated in social activities because of food allergies?		
- Specific to treatment plan (e.g.		Do you or your child ever feel sad or down about food allergies?		
	oral food challenges)	Do you or your child ever feel worried or anxious about food allergies?		
	U			

e in social activities because ial activities because of food n about food allergies? nxious about food allergies? Does your child ever refuse to eat a food that you know is safe because of worry/anxiety? Does your child ever refuse to eat in specific locations even if it is safe? Oral food challenges How do you feel about completing an oral food challenge?

Do you or your child feel hesitant to complete an oral food challenge

Food allerey management

due to worry/anxiety?

Herbert L, Shemesh E, Bender B. J Allergy Clin Immunol Pract 2016;4:205-13

25

TABLE II. When to refer to a mental health professional

Family would benefit from additional psychoeducation about food allergy Parent has difficulty asserting food allergy needs with other caregivers Family needs assistance with food allergy-related management concerns at home, school... Child recently experienced an allergic reaction and expresses worry about future reactions Child has difficulty asserting food allergy needs outside of the home Parent or child has difficulty coping with food allergy-related anxiety Family would benefit from assistance preparing for an oral food challenge or clinical trial Family needs assistance transitioning food allergy management to child/ adolescent

Food allergy-related concerns are only one component of a broader mental health disorder

Parent or child has a diagnosable mental health disorder

Indications to **Refer:** Food Allergy-Related **Psychosocial Concerns Allergists** Should Look For

Herbert L, Shemesh E, Bender B. J Allergy Clin Immunol Pract 2016:4:205-13

Availability of Mental Health Services for Patients with Food Allergy

- 2019 survey of 28 FARE Clinical Network Centers of Excellence
 - Only 21% had a mental health professional in their Division
 - Many had a psychologist (86%) or psychiatrist (68%) in their institution to refer to
 - Fewer had a psychologist (54%) or psychiatrist (18%) in the community to refer to
 - 61% did not have mental health support for clinical trial participants, yet 81% wanted it.

Herbert L at al. J Allergy Clin Immunol Pract 2019 May 14. pii: S2213-2198(19)30453-2.

	Mental health concern	n (%)
\rightarrow	Parent anxiety about living with a food allergy	26 (92.90)
\rightarrow	Child anxiety about living with a food allergy	27 (96.40)
	Needle phobia or other medical procedure anxiety	23 (82.10)
	Avoidance of safe foods or unnecessarily restricted diets	25 (89.30)
	Food allergy-related bullying	20 (71.40)
\rightarrow	Parent/child anxiety about oral food challenges	27 (96.40)
	Panic attacks	19 (67.90)
	Minimization of food allergy severity	17 (60.70)
	Adherence concerns	20 (71.40)

TABLE II. CE Coordinators' perceptions of when patients would benefit from mental health services

Time point	n (%)
→ At time of diagnosis	25 (89.30)
After an allergic reaction	19 (67.90)
→ Before an oral food challenge	20 (71.40)
During an oral food challenge	10 (35.70)
Once a year	6 (21.40)
→ Before notable developmental transitions	22 (78.60)
Only if clinically indicated	4 (14.30)

Co-Management Models: Case 1 Parental Anxiety after Food Allergy Diagnosis

- 9-month-old girl recently diagnosed with food allergies to peanut, milk and egg after anaphylaxis
- At a follow-up visit, parents report to allergist that the diagnosis has caused increased stress, worry and anxiety:
 - Mother reports near constant fear of reactions
 - Parents repeatedly changing clothes and washing hands to avoid allergen exposure
 - Allergist recommended additional "safe" food introductions, but parents report feeling too anxious to try those foods
- Parental food allergy-related anxiety and stress → referral to mental health professional
 - Allergist provides psychologist with specific examples of anxiety-related behaviors and adverse effects

Case 1: Parental Anxiety and Stress after New Diagnosis

- Parents begin seeing the psychologist who provides:
 - Psychoeducation
 - Cognitive behavioral therapy
 - Food exposure therapy and supervised food introduction
- Joint visits with allergist and psychologist
 - Allergist reviews test results and addresses parental concerns re: introduction of safe foods
- After 3-4 months, child has tolerated supervised introduction of foods and parents report decreased stress and additional food introduction at home

Co-Management Models: Case 2 Increased Anxiety after a Recent Reaction

- 13-year-old boy with multiple food allergies (milk, egg, wheat, peanut, tree nuts, seeds) who recently experienced anaphylaxis after an accidental exposure to milk
- He has always been very vigilant in avoiding his allergens, but when asked how he has been doing since the reaction, his parents share that he has shown concerning signs of increased anxiety:
 - Checking ingredient lists repeatedly, even for safe foods
 - Seeing food and thinking that he is having a reaction to it
 - Refusing to participate in social activities due to fear of allergen exposure
- Food allergy-related anxiety ightarrow referral to mental health professional
 - Allergist provides psychologist with specific examples of anxiety-related behaviors and adverse effects

Case 2: Increased Anxiety after a Recent Reaction

- He begins seeing the psychologist and components of cognitive behavioral therapy used include:
 - Self-monitoring
 - Coping skills training
 - Exposure therapy
- Joint visits with allergist and psychologist
 - Allergist reviews medical risks associated with various exposures to provide "evidence" to challenge anxious thoughts
- After three months, he and parents report decreased anxiety and increased confidence using food allergy management strategies

74th PAAA Annual Meeting

JUNE 23-25, 2023 The Hotel Hershey, Hershey, PA

From Surviving to Thriving: Rediscovering Fulfillment in Allergy Immunology Practice

Presented by: Hemant Sharma, MD, MHS

Sunday, June 25, 2023 10:30 a.m. – 11:15 a.m.

PENNSYLVANIA ALLERGY & ASTHMA ASSOCIATION

74th PAAA Annual Meeting

JUNE 23-25, 2023 The Hotel Hershey, Hershey, PA PAA

From Surviving to Thriving: Rediscovering Fulfillment in Allergy Immunology Practice

Hemant Sharma, MD MHS Division of Allergy and Immunology Clinician Well-being Program Children's National Hospital

1

Disclosures

Research Support:

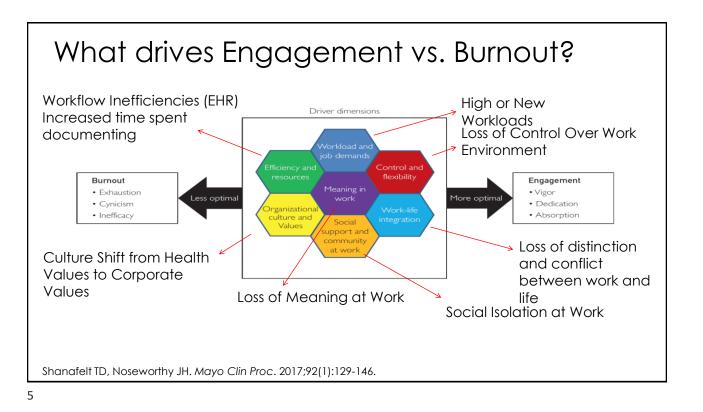
- NIAID
- DBV Technologies
- Aimmune Therapeutics

Learning Objectives

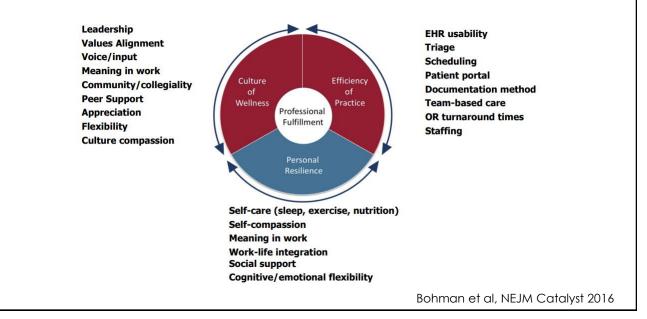
- Explore the drivers of your professional well-being, and the prolonged impact of the COVID-19 pandemic on those drivers.
- Reflect on your current individual well-being and opportunities for professional and personal growth.
- Identify strategies you can adopt in your practice environment to allow you to thrive professionally.

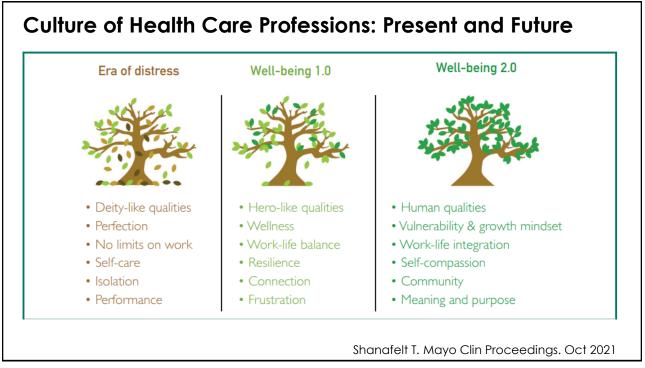
3

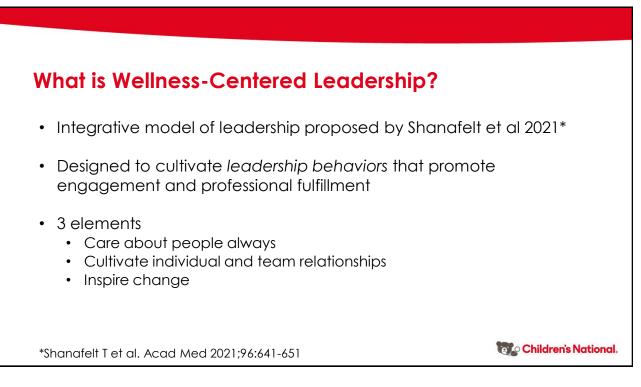
You are not alone

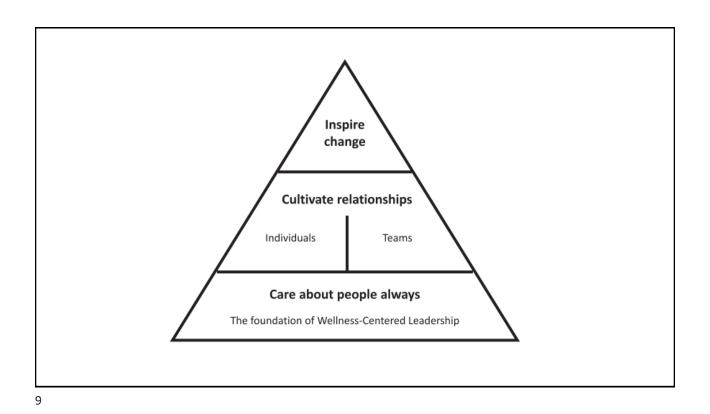

The COVID-19 pandemic has exacerbated already high rates of burnout:

- Impact of Pandemic:
 - Burnout among US physicians increased from 38% in 2020 to <u>63%</u> in 2021¹
 - Emotional exhaustion in healthcare workers rose from 32% in 2019 to 40% in 2021 (41% to 49% among nurses)²
- Consequences:
 - Annual cost of burnout: \$9 billion for nurses, \$6.3 billion for physicians³
 - 1 in 15 US physicians has thoughts of suicide³

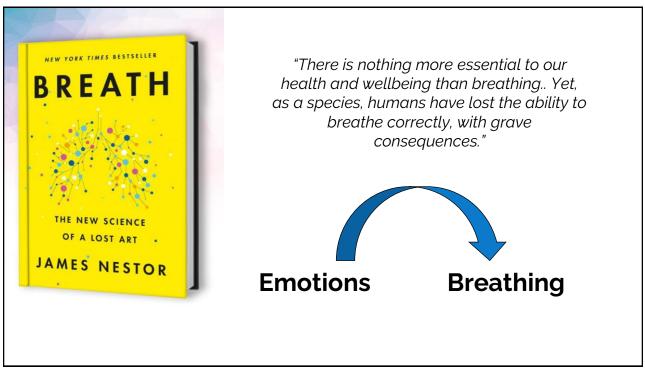

¹ Shanafelt TD et al. Mayo Clin Proc. 2022. ² Sexton JD et al. JAMA Open Network. 2022.

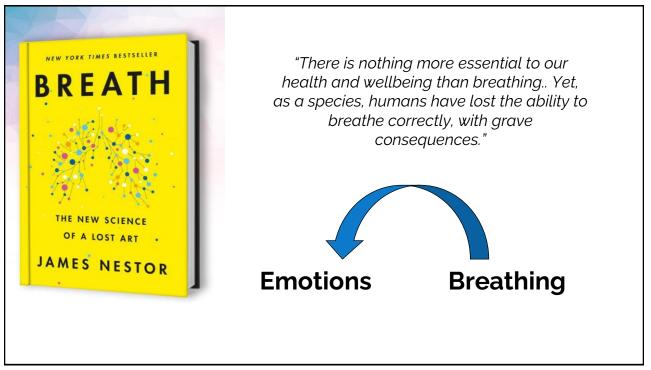

³ Addressing Health Worker Burnout: The U.S. Surgeon General's Advisory, 2022.





Well-being: 20% Individuals + 80% Systems

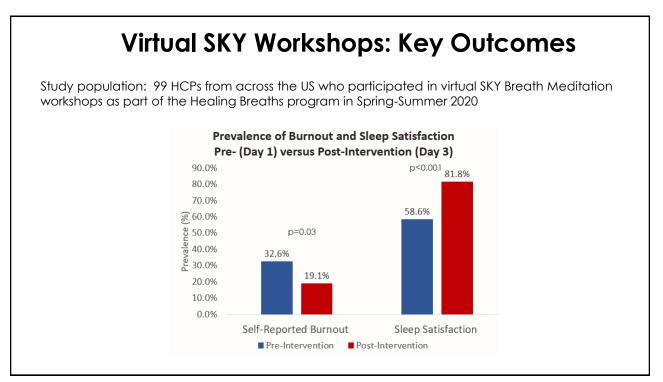

Complaints

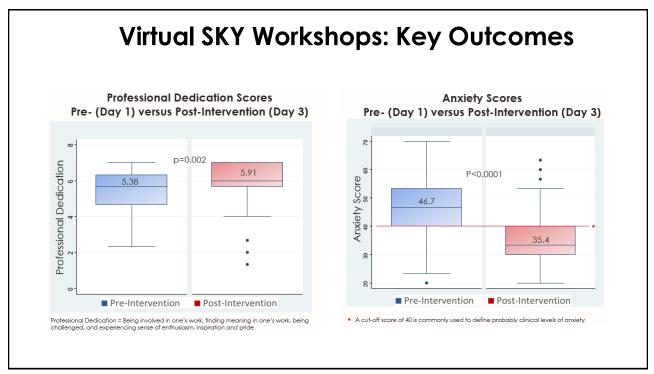

Partner #1 : Complain about <u>all</u> the things that are bothering you now. (2 min)

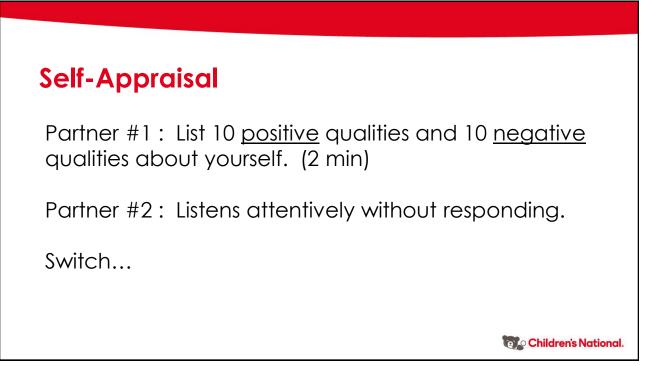
Partner #2: Listens attentively without responding.

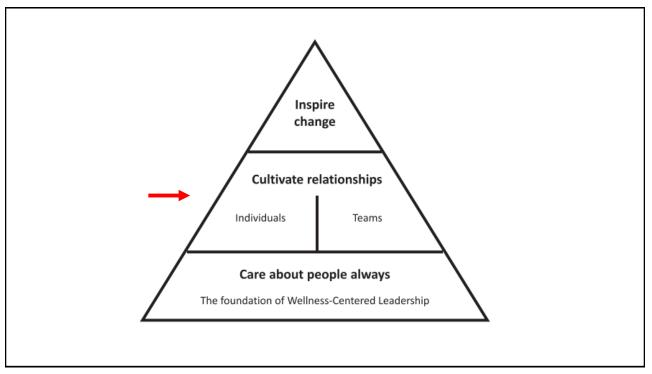
Switch...

Element	Mindset	Behaviors	Outcomes
Care about people always	 Recognition of the role leaders play in the well-being, professional fulfillment, and vitality of team members and the team as a whole Curious and respectful Empathetic and understanding 	 Recognize and appreciate individual contributions and talents Give credit Discover individual needs and gifts through dialogue Demonstrate gratitude Discuss and model self-care and self-valuation Lead conversations about work-life integration Adapt communication based on need (including people in distress) Provide resources, support, and education on well-being Recognize signs of distress Role model concern for sleep, rest, vacations, 	 Team members feel valued and appreciated as individuals Psychological safety for individuals and the community Team members believe self-care is valued and is demonstrated through support of reasonable working hours, scheduling, vacation, and time off People proactively discuss their wellbeing needs without being prompted Team members help cross cover each other and support one another's wellness
	about people always th caring for self"	and personal relationships through vulnerable and authentic self-disclosure • Listen for what is important to others and	
leadershi	y for others promotes p effectiveness more nitive task proficiency"	ask open-ended questions • Demonstrate humble inquiry • Practice "agenda-less" listening	


<section-header><section-header><text>


Children's National.


SKY Breath Workshop: Virtual Implementation as part of Pandemic Response

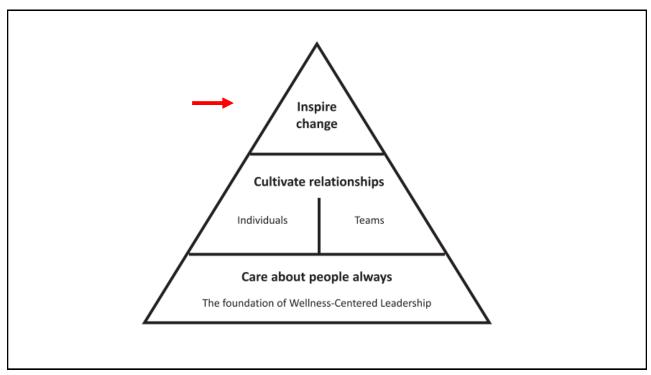

In Spring and Summer 2020, as a rapid response to the pandemic, Children's National approached the Art of Living Foundation's *Healing Breaths* Program to offer virtual workshops to its healthcare professionals.

- Overwhelming Response: >300 CNH HCPs participated in a total of 9 workshops offered over 3 time periods
- Workshop Logistics:
 - 2.5-hour session/day over 3 consecutive days
 - 100% virtual conducted online via Zoom
 - Taught by trained instructors from Art of Living Foundation

Praise Partner #1 : Praise <u>yourself</u>. (2 min) Partner #2 : Listens attentively without responding. Switch...

21

Praise

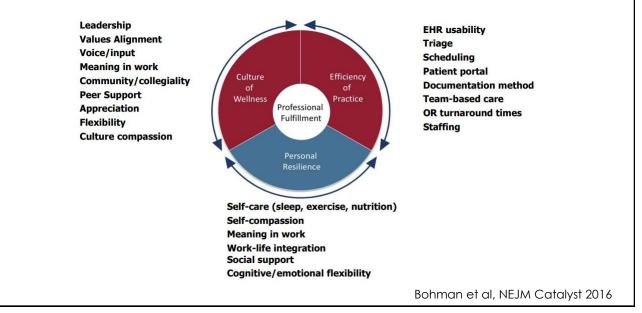

Partner #1: Praise <u>your partner</u>. (2 min)

Partner #2: Listens attentively without responding.

Switch...

Children's National.

Element	Mindset	Behaviors	Outcomes
Inspire change	 A critical job of leadership is to motivate teams to achieve meaningful results Team members have the best insights on how to improve the work environment The leader's role is to build consensus regarding priorities for improvement Providing team members with the ability to shape and help lead change builds a sense of community, meaning, and purpose Recognize the complexity and interdependence of health care Diversity (in all respects) and healthy debate lead to better decisions and outcomes Recognition that leaders are change agents, embracing and leading teams through change Recognition of others' capacity for inspiring growth and performance "Show me" (i.e., modeling the desired change) is more convincing than "tell me" 	 Consistently model desired change Guide team to identify priorities for change Empower team to lead change in prioritized domains Establish mutual respect Influence others and build consensus Delegate tasks that others are capable of performing and interested in doing Follow up in a way that is empowering Believe and respond to feedback from others Evaluate performance from a growth mindset Align goals with intrinsic motivation and extrinsic rewards Build alignment on priorities Communicate the value leaders place on personal relationships and work–life integration Deliver quick wins that demonstrate commitment to values and vision and recognize/celebrate the wins of individuals, the community, and the organization Seek advice and input 	 Sense of co-ownership of the work unit among team members (we/us not they/them) Belief that change is possible Increased satisfaction with work–life integration People know leaders see in them the capacity for growth and performance Improved results (e.g., quality, safety, productivity) and patient confidence in physicians Acceptance of (or ideally buy-in on) decisions Inspiring performance that goes beyond expectations


Γ

Team-Based Care	Table 2 Components of the Team-Based Model of Care		
	Strategy	Tactics	
	Previsit planning	 Team member obtains outside medical records and laboratory results The patient completes the previsit questionnaire 	
	Previsit laboratory testing	 Physician or designee orders next visit's laboratories at the end of the visit 	
	Team huddle	 Preclinic huddle with all team members to plan clinic day's activities 	
	Expanded rooming	 Nurse or MA enters certain elements of medical history into EHR and performs medication reconciliation Nurse or MA hands off to the provider Provider validates entered data 	
	Team documentation	 Nurse, MA, or scribe documents visit while the provider obtains additional history and develops a treatment plan Nurse or MA prepares an after-visit summary 	
	Expanded discharge	 Nurse or MA provides patient education, re- views plan of care, and conducts follow-up care coordination 	
	Documentation sign-off	 The provider reviews, modifies, and signs note in EHR 	
	Abbreviations: EHR, electronic	health record; MA, medical assistant.	
Sharma H. Ann Allergy Asthma Immunol	126 (2021) 235-239.		

Other Resources: AMA Steps Forward – Success Stories of What Works AMA Steps Forward: Transform your Practice | AMA STEPS Forward | AMA Ed Hub (amaassn.org) Sign In 🔻 \equiv Q AMA \leq STEPS forward Want to take guizzes and track your credits? Sign Up Home Toolkits Core Workflow Toolkits Podcast Transcript Learn More **Redesign your** PRACTICE TRANSFORMATION practice. Burnout and Well-Being (16) **Reignite your** EHR and Technology (10) purpose. Organizational Culture (15) 0 AMA STEPS Forward® offers a collection of engaging and Patient-Physician Experience (16) Team-Based Care and Workflow (29) able "how-to" guides to transform and improve your

27

Well-being: 20% Individuals + 80% Systems

