PENNSYLVANIA ALLERGY & ASTHMA ASSOCIATION

73RD PAAA ANNUAL MEETING

JUNE 24-26, 2022 THE HOTEL HERSHEY, HERSHEY, PA

ONSITE PROGRAM

CONTENTS

Purpose and Target Audience	3
Program Outcomes	3
Accreditation	3
CME Disclosures	4
Notice of Disclaimer	4
Agenda	5
Faculty Participants	8
2022 PAERF Contributors	9
PAERF Travel Recipients 2022	9
Posters Submitted for Display	10
Meeting Support	11
2022 Annual Meeting Attendees	12
Save the Date	15
Faculty Presentations	16

Purpose and Target Audience

Allergists, Immunologists, Pulmonologists, Family Practitioners, Certified Registered Nurse Practitionersand Physician Assistants with the most current and up-to-date treatments and scientific informationregarding allergy, asthma, and immunology.

Program Outcomes

At the conclusion of this learning activity, participants should be able to:

Apply new knowledge in a variety of topics to improve identification and screening practices to help them choose appropriate biologics and appropriate therapies for their patients.

Accreditation

For Physicians:

This activity has been planned and implemented in accordance with the accreditation requirements and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint providership of the Pennsylvania Medical Society and Pennsylvania Allergy and Asthma Association. The Pennsylvania Medical Society is accredited by the ACCME to provide continuing medical education for physicians.

The Pennsylvania Medical Society designates this live activity for a maximum of 12.25 AMA *PRA Category 1 Credit(s)*TM. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Faculty and all others who have the ability to control the content of continuing medical educationactivities sponsored by Pennsylvania Medical Society are expected to disclose to the audience whetherthey do or do not have any real or apparent conflict(s) of interest or other relationships related to the content of their presentation(s).

CME Program Evaluation and Credit

You will receive an email with instructions on how to access the online evaluation immediately following the course. In order to receive CME credit, you must complete the online evaluation and submit an electronic attestation form. This evaluation is necessary in order to meet CME requirements established by the Pennsylvania Medical Society. If you need to update your email address, please stop by the PAAA registration desk to do so. This information will not be shared with outside parties or companies and is for the sole use of CME evaluation purposes.

The evaluation will be available starting Monday, June 27, 2022.

CME Disclosures

Financial relationships reported by members of the Pennsylvania Allergy and Asthma Association's Planning Committee are provided below. During all phases of planning for the Annual Meeting areas of conflict were managed through a peer-review process and/or through individual recusal when appropriate.

The Planning Committee has reviewed all presenter disclosure reports, identified potential conflicts of Interest, and implemented strategies to manage those areas of conflict, where they exist

Name	Company Name	Nature of Relationship
Supinda Bunyavanich, MD, MPH, MPhil		Nothing to Disclose
Hey Chong, MD*		Nothing to Disclose
Megan Cooper, MD, PhD	Enzyvant	Consultant
Carla Davis, MD	DBV	Researcher
	Regeneron	Researcher
Magee DeFelice, MD*		Nothing to Disclose
Alexandra Freeman, MD		Nothing to Disclose
Gisoo Ghaffari, MD*		Nothing to Disclose
Torie Grant, MD, MHS		Nothing to Disclose
Tanya Laidlaw, MD	AstraZeneca, GSK, Regeneron	Consultant
David Stukus, MD	Before Brands, Inc.	Consultant
	DBV Technologies	Research
	Novartis	Consultant
Paige Wickner, MD, MPH	CVS Health	Employee

* Designates a Pennsylvania Allergy and Asthma Association Program Committee member.

Notice of Disclaimer

The information presented is that of the contributing faculty and does not necessarily represent the views of the Pennsylvania Allergy and Asthma Association, the CME accreditor, Pennsylvania Medical Society, and/or any named commercial entity providing financial support.

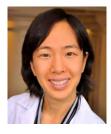
The Pennsylvania Allergy and Asthma Association makes every effort to ensure that speakers are knowledgeable authorities in their fields. Seminar attendees are nevertheless advised that the statements and opinions expressed by seminar speakers are those of the speakers, not that of Pennsylvania Allergy and Asthma Association. The speakers' statements and/or opinions should not be construed as Pennsylvania Allergy and Asthma Association disclaims any liability or recommendations, and Pennsylvania Allergy and Asthma Association disclaims any liability or responsibility for the consequences of any actions taken in reliance upon those statements or opinions.

PAAA 2022 Annual Meeting Agenda

Thursday, June 23, 2022	
4:00 p.m. – 6:30 p.m.	Registration & Exhibitor Set Up Garden Terrace Lobby & Starlight Terrace Ballroom
Friday, June 24, 2022	
7:30 a.m. – 7:50 a.m.	Registration Open/Continental Breakfast/Visit with Exhibitors Garden Terrace Lobby & Starlight Terrace Ballroom
7:50 a.m. – 8:00 a.m.	Welcome and Introductions Garden Terrace Ballroom Sigrid DaVeiga, MD 2021–2022 PAAA President
8:00 a.m. – 8:45 a.m.	COVID-19 in Primary Immune Deficiencies Alexandra Freeman, MD
8:45 a.m. – 9:30 a.m.	2020 Updates to Asthma Management Guidelines: SMART Dosing in Asthma Torie Grant, MD, MHS
9:30 a.m. – 10:15 a.m.	Asthma: Lessons from the Upper Airway Supinda Bunyavanich, MD, MPH, MPhil
10:15 a.m. – 10:45 a.m.	Refreshment Break/Visit Exhibitors Starlight Terrace Ballroom
10:45 a.m. – 11:30 a.m.	The Hyper IgE Syndromes Alexandra Freeman, MD
11:30 a.m. – 12:15 p.m.	The Microbiome and Food Allergy Supinda Bunyavanich, MD, MPH, MPhil
12:15 p.m. – 1:00 p.m.	Mayer A. Green, MD Allergy Foundation Memorial Lecture The Promise and Limits of Food Allergen Immunotherapy Carla Davis, MD
1:00 p.m.	Adjournment of PAAA Educational Activities
1:30 p.m. – 2:30 p.m.	Non-CME ISS Program Tea House Room <i>Evidence for Using a Biologic to Treat Two Different</i> <i>Eosinophil-Driven Diseases: Severe Eosinophilic Asthma and</i> <i>Chronic Rhinosinusitis with Nasal Polyps</i>
6:30 p.m. – 7:30 p.m.	Non-CME ISS Program Tea House Room Dual Inhibition: Targeting Systemic and Localized Type 2 Inflammation in Asthma
8:00 p.m. – 10:00 p.m.	Dessert Reception with Exhibitors Starlight Veranda *Pre-Registration Required

PAAA 2022 Annual Meeting Agenda

Saturday, June 25, 2022	
6:30 a.m. – 7:30 a.m.	Non-CME ISS Program
	Overlook Room
	Challenges Associated with Respiratory Viral Infections in Patients with Primary
	Immunodeficiency: An Expert Discussion & Real-World Experience
7:00 a.m. – 7:50 a.m.	Registration Open/Continental Breakfast/Visit with Exhibitors
	Garden Terrace Lobby & Starlight Terrace Ballroom
7:50 a.m. – 8:00 a.m.	Welcome and Introductions
	Garden Terrace Ballroom
	Hey Chong, MD
	2022 Program Chair
8:00 a.m. – 8:45 a.m.	Operationalizing an Allergy Framework for COVID-19 Vaccinations
	Paige Wickner, MD, MPH
8:45 a.m. – 8:55 a.m.	PAERF Grantee Presentation
	Presenter: Stanislaw Gabryszewski, MD, PhD
	Investigating epidemiologic and immunologic relationships between systemic
	and gastrointestinal food allergies
8:55 a.m. – 9:00 a.m.	Recognition of Long-Standing Attendees and In Memoriam
	Janet Beausoleil, MD
	Historian
9:00 a.m. – 9:45 a.m.	Recognizing Health Disparities in Food Allergy
	Carla Davis, MD
9:45 a.m. – 10:15 a.m.	Annual Business Meeting
10:15 a.m. – 10:45 a.m.	Refreshment Break/Visit Exhibitors
10:45 a.m. – 11:30 a.m.	AERD - Diagnosis and Treatment
	Tanya Laidlaw, MD
11:30 a.m. – 12:15 p.m.	Quality/Safety in the Allergy Practice
	Paige Wickner, MD, MPH
12:15 p.m. – 1:00 p.m.	Disparities in Asthma
	Torie Grant, MD, MHS
1:15 p.m. – 2:45 p.m.	WORKSHOP: Aspirin and NSAID Challenges
	Tanya Laidlaw, MD
2:45 p.m.	Adjournment of PAAA Educational Activities
6:30 p.m. – 10:00 p.m.	Fireside Social & Dinner*
	DJ and Children's Activities with Hotel Hershey Staff
	Formal Gardens East
	*Pre-registration Required


PAAA 2022 Annual Meeting Agenda

Sunday, June 26, 2022	
7:00 a.m. – 7:35 a.m.	Registration Open/Continental Breakfast Garden Terrace Lobby & Starlight Terrace Ballroom
7:35 a.m. – 7:45 a.m.	Welcome and Introductions Garden Terrace Ballroom Magee DeFelice, MD 2022 Assistant Program Chair
7:45 a.m. – 8:30 a.m.	Rheumatology in the Al Clinic Megan Cooper, MD, PhD
8:30 a.m. – 9:15 a.m.	Patient Education in the Office David Stukus, MD
9:15 a.m 9:45 a.m.	Refreshment Break/Poster Presentations
9:45 a.m. – 10:30 a.m.	Immune Dysregulation Megan Cooper, MD, PhD
10:30 a.m. – 11:15 a.m.	Oral Food Challenges in Infants and Toddlers David Stukus, MD
11:15 a.m.	Adjournment of PAAA Educational Activities
11:15 a.m. – 12:15 p.m.	Farewell Brunch* Starlight Veranda *Pre-registration Required

Total CME Hours Available: 12.25

Thank you to the Faculty Participants

Supinda Bunyavanich, MD, MPH, MPhil Mount Sinai Endowed Professor in Allergy and Systems Biology

Icahn School of Medicine at Mount Sinai Associate Director, Jaffe Food Allergy Institute

Alexandra Freeman, MD Director, Primary Immune Deficiency Clinic

NIAID, NIH

Megan Cooper, MD, PhD Professor, Department of Pediatrics Washington University School of Medicine Director, Clinical Immunology, and the Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, St. Louis Children's Hospital Associate Director, Medical Scientist Training Program Program Director, Pediatric Rheumatology Fellowship Washington University School of Medicine

Torie Grant, MD, MHS Assistant Professor Johns Hopkins University School of Medicine

Tanya Laidlaw, MD

Associate Professor of Medicine, Harvard Medical School Division of Allergy and Clinical Immunology Chief, Section of Clinical and Translational Sciences Director of the AERD Center Harvard Medical School/Brigham and Women's Hospital

Carla Davis, MD Professor, Department of Pediatrics and Pathology, Immunology, Allergy, and Retrovirology Director, Immunology, Allergy, and Retrovirology Division of the **Department of Pediatrics Baylor College of Medicine** Director, Texas Children's Hospital Food Allergy Program Chair, Janie and Sandra Queen Endowed in Immunology and HIV/AIDS Chair, American Academy of Allergy, Asthma and Immunology **Diversity Task Force**

David Stukus, MD

Professor of Clinical Pediatrics Director, Food Allergy Treatment Center Associate Director, Pediatric Allergy & Immunology Fellowship Program Nationwide Children's Hospital and The Ohio State University College of Medicine

Paige Wickner, MD, MPH

Assistant Professor Division of Allergy and Clinical Immunology Harvard Medical School/Brigham and Women's Hospital

Pennsylvania Allergy Educational Research Foundation (PAERF)

The Pennsylvania Allergy Educational Research Foundation (PAERF) is the charitable arm of the Pennsylvania Allergy & Asthma Association that funds educational and research endeavors related to the field of allergy and immunology. PAERF funds PAAA Annual Meeting fellows in training travel reimbursements that may be awarded to each training program in Pennsylvania. This fund allows the future leaders of our profession the opportunity to share their work through poster presentations and to participate in the meeting.

2022 Donors

(through May 16, 2022)

Janet L Beausoleil MD Corinna Bowser, MD Soheil Chegini, MD Hey J Chong MD Kara E Coffey MD Robert E Coifman MD Sigrid DaVeiga, MD Magee L DeFelice MD Denise A DiPrimio Kalman DO Ishmael Faoud, MD Tom Ferro, MD Joel M Fiedler MD Laura H Fisher MD

Mary E Fontana-Penn MD Megan K Ford MD Eugene A Gatti MD Sandra M Gawchik DO Gisoo Ghaffari MD Richard L Green MD Gretchen A Harmon MD Sarah E Henrickson MD Sharon L Hwang MD Pooja B Jhaveri MD Prakash Kaur, MD Alana B Kekevian Jones DO Norman L Koven, MD Min I Ku MD Allyson S Larkin MD Kristen M Lutzkanin MD

Gregory V Marcotte MD David Lee Miller, MD Michael J Palumbo MD Mark A Posner MD Tracy R Prematta MD Michael J Prematta MD Robert P Rabinowitz DO Thekkemadom Ramakrishnan, MD **Rejendra Singh** Karin Flynn-Rodden MD Anthony R Rooklin MD Melanie A Ruffner MD Steven D Smith MD Di Sun MD Robert M Zemble MD

PAERF Travel Recipients 2022

Kim Nguyen, MD	Children's Hospital of Philadelphia
Anthony Lacava, MD	University of Pennsylvania
Hannah Harrison, MD	Nemours Children's Hospital/Thomas Jefferson University

Posters Submitted for Display

Ramin Beheshti, MD—Penn State Health Milton S. Hershey Medical Center The Effectiveness of Unassigned Epinephrine Administrators Increases After The Implementation Of A Newly Developed Anaphylaxis Curriculum

Ramin Beheshti, MD—Penn State Health Milton S. Hershey Medical Center Immunological Origins of Atopic Dermatitis Determined Through Multi-Omic Analysis

Hannah Harrison, MD—Nemours Children's Hospital/Thomas Jefferson University Late-Onset X-Linked Chronic Granulomatous Disease: Identification of a Novel Variant in the CYBB Gene

Elisabeth Hodara, MD—St. Christopher's Hospital for Children *The Genetics of Eczema Herpeticum*

Lauren Kaminsky, MD, PhD—Penn State Health Milton S. Hershey Medical Center *Clinical outcomes of bacterial pneumonia in patients with penicillin allergy label*

Anthony Lacava, MD—Penn Cyclosporine for Omalizumab-Refractory Chronic Spontaneous Urticaria—A Report of Five Cases

Sunjay Modi, MD—Milton S. Hershey Medical Center- Penn State College of Medicine *Racial and Ethnic Disparities with Allergen Immunotherapy in Patients with Allergic Rhinitis*

Kim Nguyen, MD—Children's Hospital of Philadelphia Baseline Characteristics of Patients who Fail Low-Dose Challenge and Patients who Reach Maintenance OIT to Cashew

Catherine Popadiuk, DO—Penn State Milton S Hershey Medical Center A Case of Cutaneous Botryomycosis in a Patient with X-linked Agammaglobulinemia

Colleen Shannon, MD, MPH — Children's Hospital of Philadelphia Asthma medication adherence during the COVID-19 pandemic in children at high risk of exacerbation

Sebastian Sylvestre, MD—Penn State Hershey Medical Center Racial and Ethnic Disparities in Biologic Prescriptions for Moderate-to-Severe Persistent Asthma

Paulina Tran, DO—Children's Hospital of Philadelphia *Thymic Stromal Lymphopoietin Isoform Expression in Eosinophilic Esophagitis*

Thank You!

Educational Grant Mayer A. Green, MD Allergy Foundation

Industry Sponsored Symposia

GlaxoSmithKline—Respiratory Biologics Regeneron ADMA Biologics

Sponsors

AstraZeneca (Napkins) DBV Technologies, Inc. (Hotel Key Cards & Napkins)

Platinum Exhibitors

GlaxoSmithKline—Respiratory Biologics DBV Technologies, Inc. Regeneron CSL Behring AstraZeneca AstraZeneca Aimmune

Standard Exhibitors

Genentech ADMA Biologics **BioCryst** Horizon Therapeutics Opitnose **Blueprint Medicines** AstraZeneca Pfizer Immunology, Hospital Takeda Pfizer, Inc. Allergy & Asthma Network Grifols Pharming Healthcare Kaléo Teva Pharmaceuticals ALK Abello, Inc. LEO Pharma Inc.

Sponsors as of 6.6.22

2022 Meeting Attendees

Those listed below have opted to share their contact information with vendors. We have a total of TBD attendees registered for the meeting as of May 16, 2022.

(as of May 16, 2022)

First Name	Last Name	Degree	City	State	Zip	
Schweta	Arakali	MD	Allentown	PA	18014	
Elizabeth	Bailey	CRNP, MSN	Fort Washington	PA	19034	
Neil	Baman	MD	MD West Windsor		08550	
Janet	Beausoleil	MD	Media	PA	19063	
Jack	Becker	MD	Willow Grove	PA	19090	
Nick	Bires	PharmD	Doylestown	PA	18902	
Corinna	Bowser	MD	Narberth	PA	19072	
Неу	Chong	MD PhD	Pittsburgh	PA	15224	
Robert	Coifman	MD	Millville	NJ	08332-2529	
Megan	Cooper	MD, PhD	St Louis	МО	63110	
Michael	Davies	MD	Hollidaysburg	PA	16648	
Sandhya	Desai	MD	Wayne	PA	19087	
Geoff	DiDario	MD	Ardmore	PA	19003	
Amy	DiMase	PA-C	Middletown	NY	10941	
Denise	DiPrimio Kalman	DO	Newark	DE	19711	
Tracy	Estes	PhD, DNP, RN, FNP-BC	Newark	DE	19809	
Neil	Feldman	DO	Allentown	PA	18104	
Tom	Ferro	MD	Chester Springs	PA	19425-3729	
Joel	Fiedler	MD	Voorhees Township	NJ	08043-4781	
Karin	Flynn-Rodden	MD	Philadelphia	PA	19148-1003	
Alexandra	Freeman	MD	Bethesda	MD	20892	
Stan	Gabryszewski	MD, PhD	Philadelphia	PA	19104	
Sandra	Gawchik	DO	Philadelphia	PA	19103	
Patrick	Gleeson	MD	Philadelphia	PA	19130	
Diane	Goldberg	GSK	McLean	VA	22101	
Torie	Grant	MD	West Friendship	MD	21794	
Todd	Green	MD	Pittsburgh	PA	15238	
Neeti	Gupta	MD	East Windsor	NJ	08520	
Sarah	Henrickson	MD/PhD	Haddonfield	NJ	08033	
Shirley	Herr	PA-C	Easton	PA	18045	
Shannon	Hogate	NP	Wilmington	DE	19808	
Eva	Jakabovics	MD	Richboro	PA	18954	
Junfang	Jiao	MD	Newark	DE	19713	
Jennifer	Kannan	MD	King of Prussia	PA	19406	

First Name	Last Name	Degree	City	State	Zip	
Shannon	Kearney	DO	Allentown	PA	18103	
Shannon	Kearney	DO	Allentown	PA	18103	
John	Kim	MD	MD Cherry Hill		08003	
Sandy	Kosmaczewski	PharmD	Woodstown	NJ	08098	
Norman	Koven	MD	Philadelphia	PA	19102	
Min	Ku	MD	Haddonfield	NJ	08033	
John	Kuryan	MD	Huntingdon Valley	PA	19006	
Tanya	Laidlaw	MD	Needham	MA	02492	
Mosopefoluwa	Lanlokun	MD	Pittsburgh	PA	15219	
Allyson	Larkin	MD	Pittsburgh	PA	15224	
Jennifer	Lee	MD	Syosset	NY	11791	
Kristen	Lutzkanin	MD	Hershey	PA	17033	
Gregory	Marcotte	MD	Chadds Ford	PA	19317	
Jamie	Mattern		Petersburg	NJ	08270	
Sandro	Mattioli		Sewell		08080	
Rickey	Miller	PharmD	Aspinwall	PA	15215	
Michael	Palumbo	MD	MD Pittsburgh		15243	
Vima	Patel	MD	MD Philadelphia		19103	
Geeta	Patel	MD	MD Malvern		19355	
Sam	Patel	R.Ph., MBA	Clinton	NJ	08809	
Robert	Rabinowitz	DO	Toms River	NJ	08755	
Peter	Ricketti	DO	Trenton	NJ	08619	
Michele	Romesberg		Berlin	PA	15530	
Anthony	Rooklin	MD, MPH	Media	PA	19063	
Amandeep	Sandhu	MD, MS	Philadelphia	PA	19103	
Henry	Scovern	MD	Wyomissing	PA	19610	
Shashank	Sheth	MD	Moorestown	NJ	08057	
Rajendra	Singh	MD	Pottsville	PA	17901	
Steven	Smith	MD	Philadelphia	PA	19116	
John	Solic	MD	State College	PA	16803	
Rosemary	Stinson	NP	Havertown	PA	19083	
Erin	Toller-Artis	DO	Cherry Hill	NJ	08003	
Greg	Tutko		Pearland	ТΧ	77584	
Andrew	Vayonis	MD	Pittsburgh	PA	15222	
Michael	Wydila	MD	Wilmington	DE	19810	
Eric	Zaccone	PhD	Abingdon	MD	21009	
Robert	Zemble	MD	Allentown	PA	18104	

The PAERF Research Grant

Empowering the next generation!

"I am very grateful to the PAERF committee and sponsors, who played an instrumental role in supporting my research. The PAERF grant supported my continued training as an independent researcher, fostered fruitful collaborations, and helped enrich my knowledge about allergic disease epidemiology and mechanisms underlying systemic and gastrointestinal food allergies. Thanks to this experience, I feel empowered to continue pursuing research questions stemming from my work over the past year as I continue my training."

Stanislaw J. Gabryszewski, MD 2021 PAERF Research Grant Recipient

When donors are asked to donate, they want to know that their donation makes a measurable difference, no matter how small or large that difference may be.

Your donation to PAERF makes a measurable difference. Your contributions *"help enrich knowledge about allergic diseases."* Your contributions *"empower"* our recipients to "continue to pursue research questions."

Your contribution to PAERF ensures that there is a next generation of allergy/immunologists as dedicated and as skilled as you.

Give to PAERF for the future of our profession and ever-better outcomes for our patients.

Save the Date!

PENNSYLVANIA ALLERGY & ASTHMA ASSOCIATION 74th PAAA Annual Meeting

JUNE 23-25, 2023

The Hotel Hershey, Hershey, PA

Presentations for Friday, June 24, 2022

COVID-19 in Primary Immune Deficiencies

Alexandra Freeman, MD

2020 Updates to Asthma Management Guidelines: SMART Dosing in Asthma

Torie Grant, MD, MHS

Asthma: Lessons from the Upper Airway Supinda Bunyavanich, MD, MPH, MPhil

> **The Hyper IgE Syndromes** Alexandra Freeman, MD

The Microbiome and Food Allergy Supinda Bunyavanich, MD, MPH, MPhil

Mayer A. Green, MD Allergy Foundation Memorial Lecture The Promise and Limits of Food Allergen Immunotherapy

Carla Davis, MD

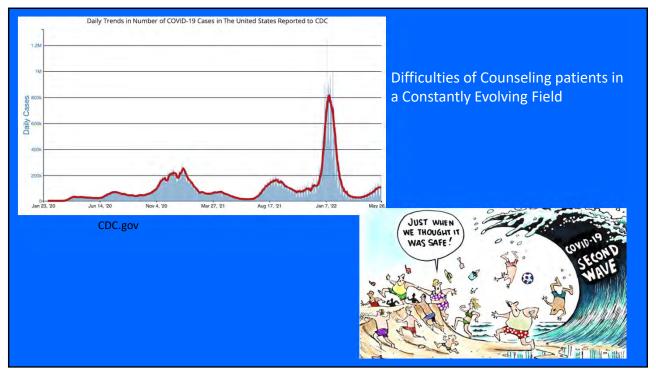
PENNSYLVANIA ALLERGY & ASTHMA ASSOCIATION

73RD PAM ANNUAL MEETING

COVID-19 in Primary Immune Deficiencies

Presented by: Alexandra Freeman, MD

Friday, June 24, 2022 8:00 a.m. – 8:45 a.m.



COVID-19 in Inborn Errors of Immunity

Alexandra Freeman MD Director, Primary Immunodeficiency Clinic NIAID, NIH June, 2022

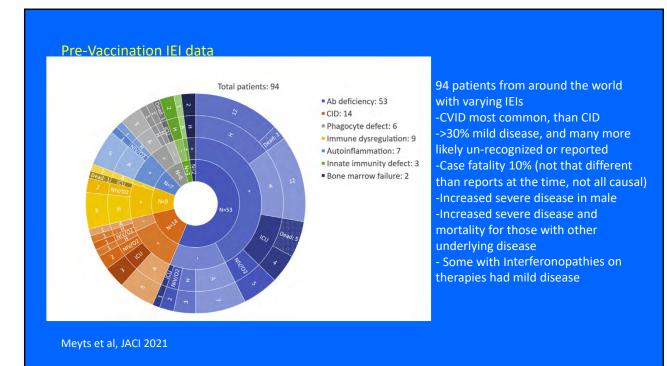
1

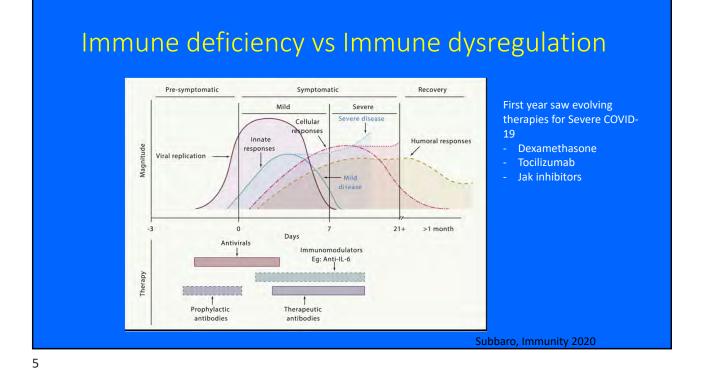
Age (years)	Gender	SARS-CoV2 PCR	Exposure	Duration (Days)	COVID-19 Severity	Complications	Outcome
12	F	+	PCR + Family Member	14	Mild	None	Recovered
14	F	Not Tested	PCR + Family member	14	Mild	None	Recovered
17	М		PCR + Family member	6	Mild	Residual Fatigue; 21 days	Recovered
24	F		PCR+ Work exposure	18	Mild	None	Recovered
26	м	+	High exposure work environment	14	Mild	Clinical worsening on day 7, treated with additional antibiotics	Recovered
27	F	+	Unknown	0	Asymptomatic	None	
41	М	+	Unknown	26	Severe	Pseudomonas co-infection; Multiorgan failure	Died
45	М	Not Tested	PCR + Work and family exposures	20	Mild	None	Recovered
28	м	+	Family member	10	moderate	Received antibiotics	Recovered; received monoclonal plus remdesivir

COVID-19 in STAT3 HIES in the pre-vaccine era

Post- vaccination: No hospitalizations yet Also first year or so, less pulmonary infections with the major decrease in circulating respiratory viruses!

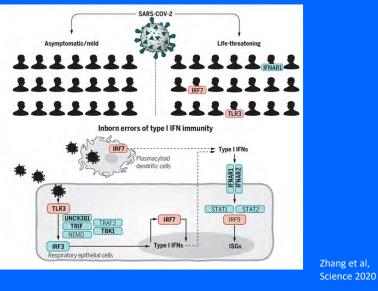
Fatality

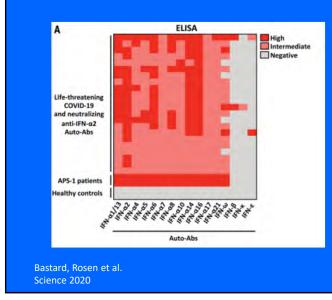

41 year old Hispanic male -obesity


-Bronchiectasis/pneumatoceles with MRSA and

Pseudomonas chronic

infection -hypertension, prior MI with coronary artery aneurysms -Busy hospital with many COVID cases


Hospitalized non-fatality: s/p pneumonectomy, remaining lung with bronchiectasis/pneumatoceles Chronic liver disease Received oxygen by NC briefly



Searching for Immune defects in those with severe COVID-19

Type 1 IFN immunity Defects identified in 3.5% of 659 pts screened with severe disease compared to 534 with asymptomatic or mild

Searching for Immune defects in those with severe COVID-19

About 10% of those with severe COVID-19 were found to have neutralizing autoabs against Type 1 IFNs Increased in males, older patients. Most clinically silent until COVID-19.

7

IEIs with IFN auto-antibodies, and immune dysregulation

- APECED
- Thymoma?
- CTLA4 Deficiency

Brief Definitive Report | April 23 2021

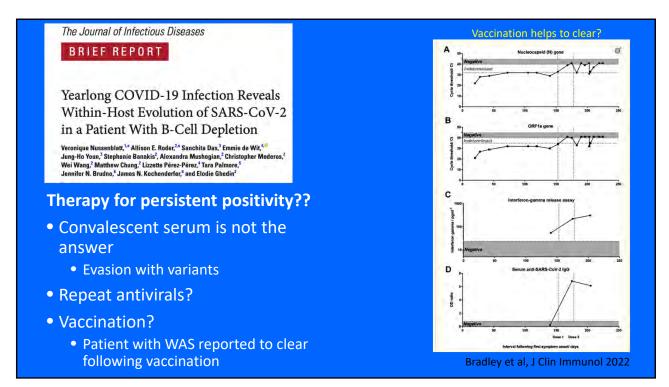
Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients with APS-1

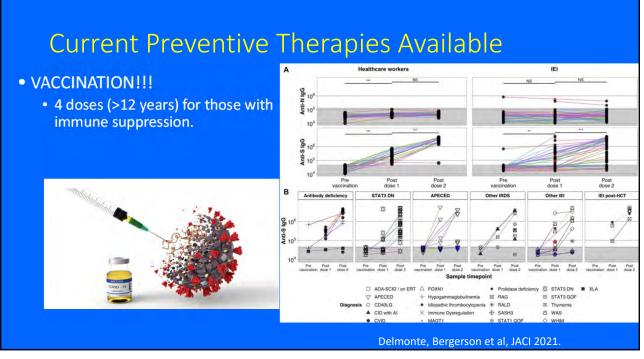
22 patients, 21 checked and positive for anti-IFN auto-abs 86% hospitalized, 65% to ICU, 18% died

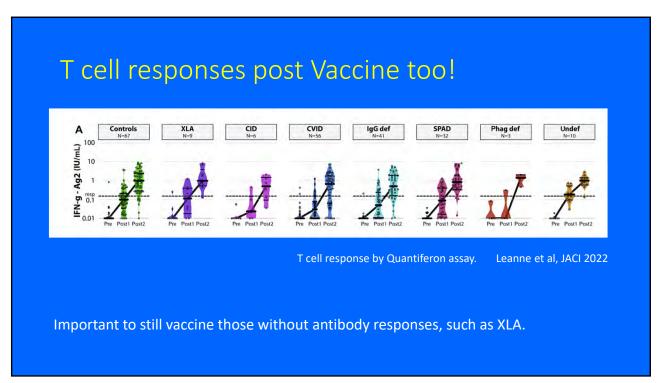
Concern of Persistent Shedding of Virus

16 year old with STAT1 GOF, s/p failed HSCT, bronchiectasis, IDDM, enteropathy. On ruxolitinib with reasonable control of disease.

October with mild COVID-19 symptoms (Delta wave) after one dose of mRNA vaccine.

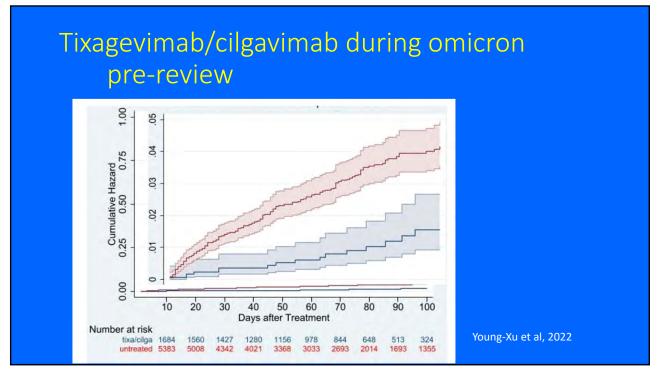

Received monoclonal antibody infusion, with guick resolution of symptoms.


About 100 days later, lung pulmonary infection.


-NP swab SARS-CoV2 PCR negative, NP wash SARS-CoV2 PCR positive, BAL PCR negative...into isolation, symptoms improved with treatment of bacterial infections. Sequence of SARS-CoV2 : Delta variant

-5 months after COVID19 infection, NP swab PCR negative, saliva SARS-CoV2 PCR positive. Delta variant.

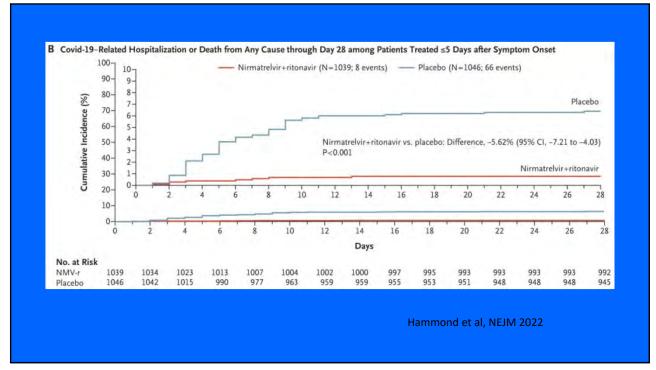
-Repeat vaccinations and Evusheld[™] given for protection.


Current Preventive Therapies Available

- Tixagevimab/cilgavimab (Evusheld)
 - 12 years and older, 40kg
 - Two shots given, well tolerated
 - Moderate to severe immune suppression
 - Seems to have activity against omicron, subvariants
 - Some activity for about 6 months?
 - Risk: slight increase in cardiac events for those with underlying cardiac history

Tixagevimab/cilgavimab during omicron pre-review, VA population

	Matched Controls Tixagevimab/cilgavimab recipients Propensity Score Survival Analysis N=6.354 N=1.733 Propensity Score Survival Analysis		Difference in Difference ^A Analysis		
	Number of Events (%) Number of Events (%) Hazard Ratio (95% CI)				
Composite outcome	(COVID-19 in	fection, COVID-19 hospitali	ization, and all-cause mortality)		
Overall Cohort	206 (3.2%)	17 (1.0%)	0.31 (0.18-0.53)		
Immunocompromised	147 (3.5%)	12(1.0%)	0.32 (0.18-0.62)		
Severely Immunocompromised	87 (3.7%)	11 (1.4%)	0.44 (0.21-0,93)		
Not Immunocompromised* but at High Risk	59 (2.8%)	(<1%)&	0.27 (0.13-0.56)	-	
	Individ	lual Outcome (Overall Coho	nrt)		
COVID-19 Infection	69 (1%)	(<0.5%) ^{&}	0.34 (0.13-0.87)	0.32 (0.24-0.44)	
COVID-19 related hospitalization	38 (0.5%)	(<0.5%) ^{&}	0.13 (0.02-0.99)	0.10 (0.05-0.22)	
All-cause Mortality	99 (2%)	(<0.5%) ^{&}	0.36 (0.18-0.73)		
Falsification: Urinary Tract Infection	127 (2%)	36 (2%)	1.05 (0.68-1.62)		


Young-Xu et al, 2022

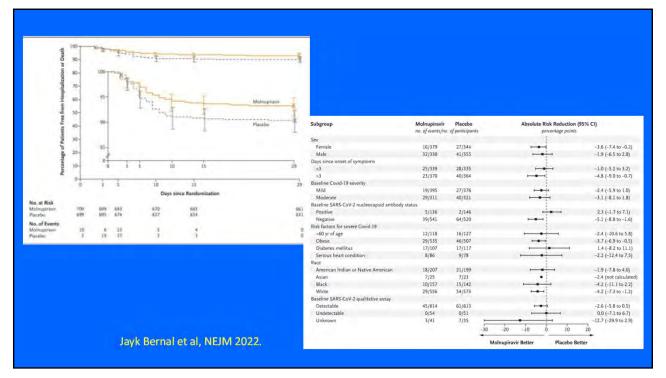
15

Current Therapeutics for Outpatients

- Monoclonals
 - Rapidly changing with variants
 - Bebtelovimab- currently available for omicron and subvariants
- Anti-virals, oral
 - Nirmatrelvir plus ritonavir (Paxlovid)
 - Protease inhibitors (ritonavir boosts levels)
 - Decrease risk of hospitalization by 88% in phase 2/3 study
 No deaths in study compared to 12 in placebo
 - Approved for 12 years and older with significant risk of severe disease
 - Start within 5 days of symptoms, give for 5 days
 - Dose adjusted for GFR 30-60, and not for use <30 GFR
 - Check for drug-drug interactions
 - Main side effect: Metallic taste in mouth

17

Paxlovid[™] rebound?

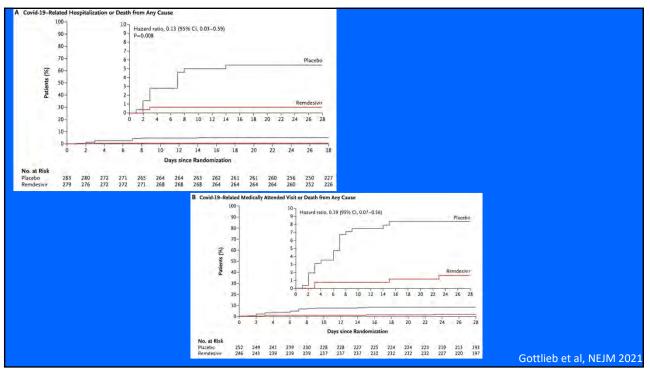

- Treated patients tested negative post therapy, and then tested positive again with some return of symptoms typically 2-8 days later
- Most with symptom resolution and test negativity again about 3 days later
- For most, mild symptoms, no need for repeat therapy.
- Evolving knowledge....will this be a bigger concern for our patients?

Current Therapeutics for Outpatients

Molnupiravir

- Cytidine nucleoside analogue that gets incorporated into the SARS-CoV2 RNA leading to errors in the RNA genome and inhibits replication
- Decreased risk of hospitalization by 30%, and death by 89% in phase 2/3 study
- Approved for 18 years old older with significant risk for severe disease
- Start within 5 days of symptoms
- 800mg BID x 5 days
- No drug interactions.
- No dose adjustments for renal or liver disease
- Well tolerated
- Mutagenicity potential- don't use in pregnancy!
- Not approved for kids- may cause bone/cartilage issues

19



Current OutpatientTherapeutics

Remdesivir IV therapy

- Inhibits RNA polymerase
- 3 day therapy for outpatients to decrease need for hospitalization, mortality
- Well tolerated
- Not studied for GFR less than 30- but can be considered
- Dosing for children and adults
- Minimal drug interactions
- Well tolerated- can increase LFTs

22

Outpatient Remdesivir

Coexisting conditions - no. (%)			
Diabetes mellitus	173 (62.0)	173 (61.1)	346 (61.6)
Obesity	154 (55.2)	156 (55.1)	310 (55.2)
Hypertension	138 (49.5)	130 (45.9)	268 (47.7)
Chronic lung disease	67 (24.0)	68 (24.0)	135 (24.0)
Current cancer	12 (4.3)	18 (6.4)	30 (5.3)
Cardiovascular or cerebrovascular disease	20 (7.2)	24 (8.5)	44 (7.8)
Immune compromise	14 (5.0)	9 (3.2)	23 (4.1)
Chronic kidney disease, mild or moderate	7 (2.5)	11 (3.9)	18 (3.2)
Chronic liver disease	1 (0.4)	1 (0.4)	2 (0.4)

Subgroup	Remdesivir no./total no.	Placebo of patients (%)				Ha	zard R	atio (S	95% C	1)	
Residence in the United States	2/264 (0.8)	12/267 (4.5)	H	-	_	_	-	1		0.17 (0.04-0.7
Age ≥60 yr	1/83 (1.2)	9/87 (10.3)	H					1		0.11 (0.01-0.8
Male sex	1/148 (0.7)	9/145 (6.2)	H	6		_		1		0.11 (0.01-0.8
Diabetes mellitus	2/173 (1.2)	14/173 (8.1)	H	-		-1		1		0.14 (0.03-0.6
Obesity	1/154 (0.6)	9/156 (5.8)	F	-		_		1		0.11 (0.01-0.8
Hypertension	2/138 (1.4)	10/130 (7.7)	H				-1	1		0.17 (0.04-0.7
Ethnic group								1			
Not Hispanic or Latinx	2/146 (1.4)	8/158 (5.1)	H	-	-			+		0.26 (0.06-1.2
Hispanic or Latinx	0/123	6/112 (5.4)						4			-
Chronic lung disease	0/67	4/68 (5.9)						1			-
Cardiovascular or cerebrovascular disease	0/20	2/24 (8.3)						1			-
Current cancer	0/12	2/18 (11.1)						1			-
			0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	
			1	Ren	ndesiv	ir Bett	er	P	acebo	Better	

23

Important therapy websites to help with therapy

- Drug interactions: <u>https://www.covid19-druginteractions.org</u>
- Finding medications: <u>https://covid-19-therapeutics-locator-</u> <u>dhhs.hub.arcgis.com</u>
- Evolving treatment guidelines: https://www.covid19treatmentguidelines.nih.gov

Thank you!! Questions?

- Luigi Notarangelo, Ottavia Delmonte and Lab
- Steve Holland and lab
- Emily Ricotta
- HIES team: Amanda Urban, Christine Lafeer, Jean Ulrick, Susan Roy
- PID team: Jenna Bergerson, Ana Agharahimi, Justina Pfister
- Stuart Tangye, Garvan Institute, Australia

PENNSYLVANIA ALLERGY & ASTHMA ASSOCIATION

73RD PAAA ANNUAL MEETING

2020 Updates to Asthma Management Guidelines: SMART Dosing in Asthma

Presented by: Torie Grant, MD, MHS

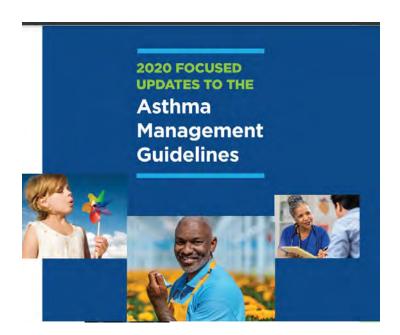
Friday, June 24, 2022 8:45 a.m. – 9:30 a.m.

2020 Updates to Asthma Management Guidelines: SMART Dosing in Asthma

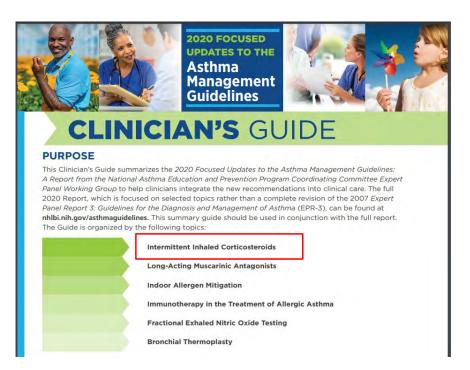
Torie Grant, MD, MHS Assistant Professor of Medicine and Pediatrics Johns Hopkins University School of Medicine

1

Disclosures


- Current Funding
 - National Institutes of Health K23 Mentored Patient-Oriented Research Career Development Award
 - American Academy of Allergy, Asthma, and Immunology Foundation Faculty Development Award

Objectives

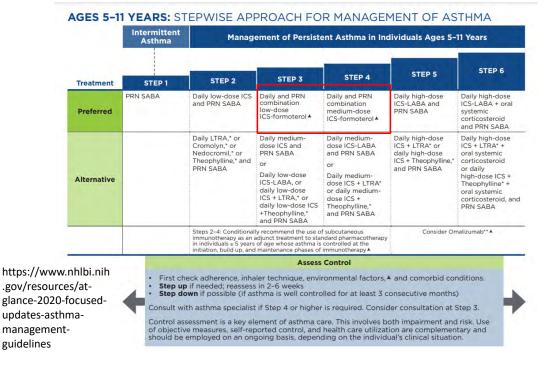

1. Understand changes to the 2020 Asthma Management Guidelines regarding single maintenance and relieve therapy (SMART)

2. Review the literature supporting SMART

3. Identify the target population and patients who would benefit from SMART

https://www.nhlbi.nih.gov/resources/2020-focused-updates-asthma-management-guidelines

In a Nutshell...


• "In individuals ages 4 years and older, the preferred Step 3 (low-dose ICS) and Step 4 (medium-dose ICS) therapy is single-inhaler ICS-formoterol both daily and as needed. In the literature, inhaled ICS-formoterol is referred to as 'single maintenance and reliever therapy (SMART)."

https://www.nhlbi.nih.gov/resources/2020-focused-updates-asthma-management-guidelines

In Summary

"In individuals ages 4 years and older, the preferred Step 3 (low-dose ICS) and Step 4 (medium-dose ICS) therapy is single-inhaler ICS-formoterol both daily and as needed. In the literature, inhaled ICS-formoterol is referred to as 'single maintenance and reliever therapy (SMART)." This form of therapy has only been used with formoterol as the LABA. Formoterol has a rapid onset and a maximum total daily dose that allows it to be used more than twice daily. The maximum total daily dose of formoterol should not exceed eight puffs (36 mcg) for ages 4–11 years and 12 puffs (54 mcg) for ages 12 years and older. SMART is administered with a single inhaler containing both formoterol and an ICS (primarily budesonide in the reviewed studies, but one study used beclomethasone). The regimens compared to address this key question required two inhalers: the controller (ICS or ICS-LABA) and the reliever (SABA). The recommended alternate therapy of maintenance ICS-LABA with SABA as quick-relief therapy does not need to be changed if it is providing adequate control. However, patients whose asthma is uncontrolled on such therapy should receive the preferred SMART if possible before moving to a higher step of therapy."

https://www.nhlbi.nih.gov/resources/2020-focused-updates-asthma-management-guidelines

8

7

Daily Dose	0-4 years of age			5-11 years of age			≥12 years of age		
	Low	Medium*	High*	Low	Medium*	High*	Low	Medium*	High*
MEDICATION									
Beclomethasone MDI [†]	N/A	N/A	N/A	80-160 mcg	>160-320 mcg	>320 mcg	80-240 mcg	>240-480 mcg	>480 mcg
40 mcg/puff				1-2 puffs 2x/day	3-4 puffs 2x/day		1-3 puffs 2x/day	4-6 puffs 2x/day	
80 mcg/puff				1 puff 2x/day	2 puffs 2x/day	≥3 puffs 2x/day	1 puff am, 2 puffs pm	2-3 puffs 2x/day	≥4 puffs 2x/day
	N/A	N/A	N/A	180-360 mcg	>360-720 mcg	>720 mcg	180-540 mcg	>540-1,080 mcg	>1,080 mcg
90 mcg/inhalation				1-2 inhs† 2x/day	3-4 inhs† 2x/day		1-3 inhs† 2x/day		
180 mcg/ inhalation					2 inhs† 2x/day	≥3 inhs† 2x/day	1 inh† am, 2 inhs† pm	2-3 inhs† 2x/day	≥4 inhs† 2x/day
Budesonide Nebules	0.25-0.5 mg	>0.5-1.0 mg	>1.0 mg	0.5 mg	1.0 mg	2.0 mg	N/A	N/A	N/A
0.25 mg	1-2 nebs*/day			1 neb† 2x/day					
0.5 mg	1 neb†/day	2 nebs1/day	3 nebs*/day	1 neb¹/day	1 neb† 2x/day				
1.0 mg		1 neb*/day	2 nebs†/day		1 neb†/day	1 neb† 2x/day			
Ciclesonide MDI ⁺	N/A	N/A	N/A	80-160 mcg	>160-320 mcg	>320 mcg	160-320 mcg	>320-640 mcg	>640 mcg
80 mcg/puff				1-2 puffs/day	1 puff am, 2 puffs pm- 2 puffs 2x/day	≥3 puffs 2x/day	1-2 puffs 2x/day	3-4 puffs 2x/day	
160 mcg/puff				1 puff/day	1 puff 2x/day	≥2 puffs 2x/day		2 puffs 2x/day	≥3 puffs 2x/day
Flunisolide MDI ⁺	N/A	N/A	N/A	160 mcg	320-480 mcg	≥480 mcg	320 mcg	>320-640 mcg	>640 mcg
80 mcg/puff				1 puff 2x/day	2-3 puffs 2x/day	>4 puffs 2x/day	2 puffs 2x/day	3-4 puffs 2x/day	≥5 puffs 2x/day

ESTIMATED COMPARATIVE DAILY DOSAGES: INHALED CORTICOSTEROIDS FOR LONG-TERM ASTHMA CONTROL

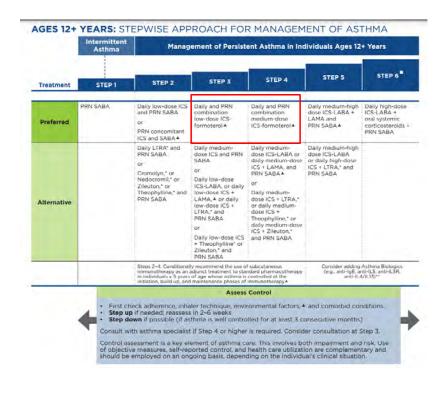
* It is preferable to use a higher mcg/putf or mcg/inhiation formulation to achieve as low a number of putfs or inhalations as possible.
* Abbreviations: DPI, dry powder inhaler (requires deep, fast inhalation); inh, inhalation; MDI, metered dose inhaler (releases a putf of medication); neb,

https://www.nhlbi.nih.gov/files/docs/guidelines /asthma_qrg.pdf

ESTIMATED COMPARATIVE DAILY DOSAGES: INHALED CORTICOSTEROIDS FOR LONG-TERM ASTHMA CONTROL (continued)

Daily Dose	0-4 years of age			5-11 years of age			≥12 years of age		
	Low	Medium*	High*	Low	Medium*	High*	Low	Medium*	High*
MEDICATION									-
Fluticasone MDI [†]	176 mcg	>176-352 mcg	>352 mcg	88-176 mcg	>176-352 mcg	>352 mcg	88-264 mcg	>264-440 mcg	>440 mcg
44 mcg/puff	2 puffs 2x/day	3-4 puffs 2x/day		1-2 puffs 2x/day	3-4 puffs 2x/day		1-3 puffs 2x/day		
110 mcg/puff		1 puff 2x/day	≥2 puffs 2x/day		1 puff 2x/day	≥2 puffs 2x/day		2 puffs 2x/day	3 puffs 2x/day
220 mcg/puff								1 puffs 2x/day	≥2 puffs 2x/day
Fluticasone DPI*	N/A	N/A	N/A	100-200 mcg	>200-400 mcg	>400 mcg	100-300 mcg	>300-500 mcg	>500 mcg
50 mcg/inhalation				1-2 inhs† 2x/day	3-4 inhs† 2x/day		1-3 inhs† 2x/day		
100 mcg/inhalation				1 inh† 2x/day	2 inhs [†] 2x/day	>2 inhs† 2x/day		2 inhs† 2x/day	≥3 inhs† 2x/day
250 mcg/inhalation						1 inh† 2x/day		1 inh† 2x/day	≥2 inhs† 2x/day
Mometasone DPI ⁺	N/A	N/A	N/A	110 mcg	220-440 mcg	>440 mcg	110-220 mcg	>220-440 mcg	>440 mcg
110 mcg/inhalation				1 inh†/day	1-2 inhs† 2x/day	≥3 inhs† 2x/day	1-2 inhs† pm	3-4 inhs† pm or 2 inhs† 2x/day	≥3 inhs† 2x/day
220 mcg/inhalation					1-2 inhs [†] /day	≥3 inhs† divided in 2 doses	1 inh† pm	1 inh [†] 2x/day or 2 inhs [†] pm	≥3 inhs† divided in 2 doses

* It is preferable to use a higher mcg/pulf or mcg/inhalation formulation to achieve as low a number of pulfs or inhalations as possible. * Abbreviations: DPI, dry powder inhaler (requires deep, fast inhalation); inh, inhalation; MDI, metered dose inhaler (releases a pulf of medication); neb, nebule.


https://www.nhlbi.nih.gov/files/docs/guidelin es/asthma_qrg.pdf

SMART for ages 5-11

- For individuals with moderate to severe persistent asthma already taking low- or medium-dose ICS (Steps 3 and 4) the **preferred treatment** is a single inhaler with **ICS-formoterol** used both daily and as needed.
- In Steps 3 and 4, the preferred option includes the use of ICS-formoterol 1 to 2 puffs as needed up to a maximum total daily maintenance and rescue dose of 8 puffs (36 mcg)
- Individuals with a severe exacerbation in the prior year are particularly good candidates for SMART to reduce exacerbations.
- Do not use ICS-formoterol as reliever therapy in individuals taking ICS-salmeterol as maintenance therapy.
- Individuals whose asthma is uncontrolled on maintenance ICS-LABA with SABA as quick-relief therapy should receive the preferred SMART if possible before moving to a higher step of therapy.
- In children ages 4–11 years, there may be a lower risk of growth suppression among those taking SMART versus daily higher-dose ICS treatment.

https://www.nhlbi.nih.gov/resources/at-glance-2020-focused-updates-asthma-management-guidelines

		0-4 years of age	e		5-11 years of age	2		≥12 years of age	
Daily Dose	Low	Medium*	High*	Low	Medium*	High*	Low	Medium*	High*
MEDICATION									
Beclomethasone MDI ⁺	N/A	N/A	N/A	80-160 mcg	>160-320 mcg	>320 mcg	80-240 mcg	>240-480 mcg	>480 mcg
40 mcg/puff				1-2 puffs 2x/day	3-4 puffs 2x/day		1-3 puffs 2x/day	4-6 puffs 2x/day	
80 mcg/puff				1 puff 2x/day	2 puffs 2x/day	≥3 puffs 2x/day	1 puff am, 2 puffs pm	2-3 puffs 2x/day	≥4 puffs 2x/day
Budesonide DPI*	N/A	N/A	N/A	180-360 mcg	>360-720 mcg	>720 mcg	180-540 mcg	>540-1,080 mcg	>1,080 mcg
90 mcg/inhalation				1-2 inhs† 2x/day	3-4 inhs† 2x/day		1-3 inhs† 2x/day		
180 mcg/ inhalation					2 inhs† 2x/day	≥3 inhs† 2x/day	1 inh† am, 2 inhs† pm	2-3 inhs† 2x/day	≥4 inhs† 2x/day
Budesonide Nebules	0.25-0.5 mg	>0.5-1.0 mg	>1.0 mg	0.5 mg	1.0 mg	2.0 mg	N/A	N/A	N/A
0.25 mg	1-2 nebs*/day			1 neb† 2x/day					
0.5 mg	1 neb†/day	2 nebs1/day	3 nebs*/day	1 neb¹/day	1 neb† 2x/day				
1.0 mg		1 neb*/day	2 nebs*/day		1 neb†/day	1 neb† 2x/day			
Ciclesonide MDI ⁺	N/A	N/A	N/A	80-160 mcg	>160-320 mcg	>320 mcg	160-320 mcg	>320-640 mcg	>640 mcg
80 mcg/puff				1-2 puffs/day	1 puff am, 2 puffs pm- 2 puffs 2x/day	≥3 puffs 2x/day	1-2 puffs 2x/day	3-4 puffs 2x/day	
160 mcg/puff				1 puff/day	1 puff 2x/day	≥2 puffs 2x/day		2 puffs 2x/day	≥3 puffs 2x/day
Flunisolide MDI ⁺	N/A	N/A	N/A	160 mcg	320-480 mcg	≥480 mcg	320 mcg	>320-640 mcg	>640 mcg
80 mcg/puff				1 puff 2x/day	2-3 puffs 2x/day	≥4 puffs 2x/day	2 puffs 2x/day	3-4 puffs 2x/day	≥5 puffs 2x/day

ESTIMATED COMPARATIVE DAILY DOSAGES: INHALED CORTICOSTEROIDS FOR LONG-TERM ASTHMA CONTROL

* It is preferable to use a higher mog/pulf or mog/initialation formulation to achieve as low a number of pulfs or inhalations as possible. * Abbreviations: DPI, dry powder inhaler (requires deep, fast inhalation); inh, inhalation; MDI, metered dose inhaler (releases a pulf of midication); neb, https://www.nhlbi.nih.gov/files/docs/guidelines /asthma_qrg.pdf

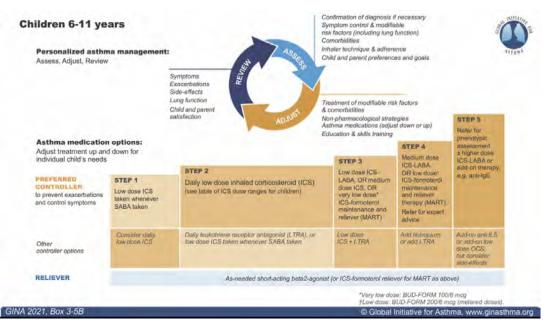
ESTIMATED COMPARATIVE DAILY DOSAGES: INHALED CORTICOSTEROIDS FOR LONG-TERM ASTHMA CONTROL (continued)

		0-4 years of age			5-11 years of age	e		≥12 years of age	
Daily Dose	Low	Medium*	High*	Low	Medium*	High*	Low	Medium*	High*
MEDICATION									
Fluticasone MDI [†]	176 mcg	>176-352 mcg	>352 mcg	88-176 mcg	>176-352 mcg	>352 mcg	88-264 mcg	>264-440 mcg	>440 mcg
44 mcg/puff	2 puffs 2x/day	3-4 puffs 2x/day		1-2 puffs 2x/day	3-4 puffs 2x/day		1-3 puffs 2x/day		
110 mcg/puff		1 puff 2x/day	≥2 puffs 2x/day		1 puff 2x/day	≥2 puffs 2x/day		2 puffs 2x/day	3 puffs 2x/day
220 mcg/puff								1 puffs 2x/day	≥2 puffs 2x/day
Fluticasone DPI ⁺	N/A	N/A	N/A	100-200 mcg	>200-400 mcg	>400 mcg	100-300 mcg	>300-500 mcg	>500 mcg
50 mcg/inhalation				1-2 inhs† 2x/day	3-4 inhs† 2x/day		1-3 inhs† 2x/day		
100 mcg/inhalation				1 inh† 2x/day	2 inhs [†] 2x/day	>2 inhs† 2x/day		2 inhs† 2x/day	≥3 inhs† 2x/day
250 mcg/inhalation						1 inh† 2x/day		1 inh† 2x/day	≥2 inhs† 2x/day
Mometasone DPI ⁺	N/A	N/A	N/A	110 mcg	220-440 mcg	>440 mcg	110-220 mcg	>220-440 mcg	>440 mcg
110 mcg/inhalation				1 inh†/day	1-2 inhst 2x/day	≥3 inhs† 2x/day	1-2 inhs† pm	3-4 inhs† pm or 2 inhs† 2x/day	≥3 inhs† 2x/day
220 mcg/inhalation					1-2 inhs [†] /day	≥3 inhst divided in 2 doses	1 inh† pm	1 inh [†] 2x/day or 2 inhs [†] pm	≥3 inhs [†] divided in 2 doses

* It is preferable to use a higher mcg/pulf or mcg/inhalation formulation to achieve as low a number of pulfs or inhalations as possible. * Abbreviations: DPI, dry powder inhaler (requires deep, fast inhalation); inh, inhalation; MDI, metered dose inhaler (releases a pulf of medication); neb, nebule.

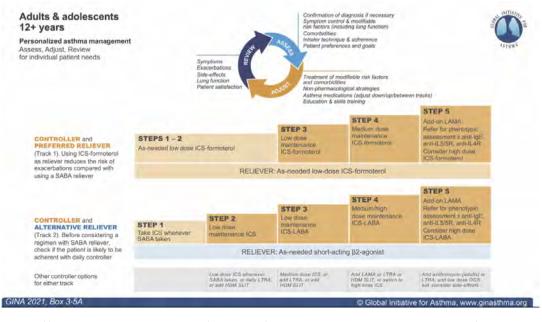
https://www.nhlbi.nih.gov/files/docs/guidelin es/asthma_qrg.pdf

SMART for ages 12+


- For individuals with moderate to severe persistent asthma already taking low- or medium-dose ICS (Steps 3-4), the **preferred treatment is a single inhaler with ICS-formoterol (SMART)** used both daily and as needed.
- In steps 3 and 4, the preferred option includes the use of ICS-formoterol 1 to 2 puffs as needed up to a maximum total daily maintenance and rescue dose of **12 puffs (54 mcg)**.
- *Individuals with a severe exacerbation in the prior year* are particularly good candidates for SMART to reduce exacerbations.
- Do not use ICS-formoterol as reliever therapy in individuals taking ICSsalmeterol as maintenance therapy.
- Individuals whose asthma is uncontrolled on maintenance ICS-LABA with SABA as quick-relief therapy should receive the preferred *SMART if possible before moving to a higher step of therapy*

https://www.nhlbi.nih.gov/resources/at-glance-2020-focused-updates-asthma-management-guidelines

15


NAEEP vs. GINA?

- GINA = Global Initiative for Asthma
- · More of a living document with frequent updates
- Adopted SMART in 2014
- In 2019, low-dose ICS-formoterol became the preferred reliever or 12+ and is an option for 6-11 years

https://www.guidelinesinpractice.co.uk/respiratory/gina-asthma-strategy-whats-new-for-2021/

17

https://www.guidelinesinpractice.co.uk/respiratory/gina-asthma-strategy-whats-new-for-2021/

Why SMART?

• Let's review the evidence

Why formoterol?

- Onset of action is rapid like albuterol
- Patients get quick relief
- Has the added advantage of a longer duration of action

Reddel HK, J Allergy Clin Immunol Pract. 2022

Budesonide/Formoterol Combination Therapy as Both Maintenance and Reliever Medication in Asthma

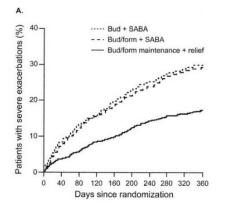
Paul M. O'Byrne, Hans Bisgaard, Philippe P. Godard, Massimo Pistolesi, Mona Palmqvist, Yuanjue Zhu, Tommy Ekström, and Eric D. Bateman

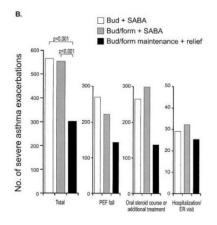
Firestone Institute for Respiratory Health, St. Joseph's Hospital, Hamilton, Ontario, Canada; COPSAC Clinical Research Unit, University Hospital of Copenhagen, Gentofte, Denmark; Hôpital Arnaud de Villeneuve, Service des Maladies Respiratoires and Bronchomotricité, Montpellier, France; Department of Critical Care, Section of Respiratory Medicine, University of Florence, Florence, Italy; Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, Gothenburg, Sweden; Respiratory Department, Peking Union Medical College Hospital, Beijing, China; AstraZeneca R&D, Lund, Sweden; and University of Cape Town, Cape Town, South Africa

Am J Respir Crit Care Med. 2005 Jan 15;171(2):129-36

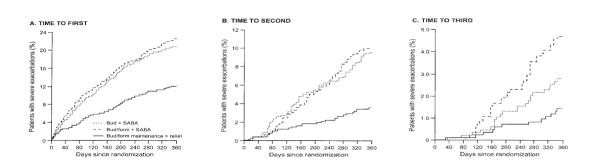
TABLE 1. PATIENTS' BASELINE CHARACTERISTICS

Characteristic	Bud + SABA $(n = 926)$	$\frac{\text{Bud/form} + \text{SABA}}{(n = 909)}$	Bud/form Maintenance + Relie (n = 925)
Male/female, n	416/510	394/515	421/504
Age, yr	36 (4-79)	36 (4-79)	35 (4-77)
4–11 years, n (%)	106 (11)	117 (13)	118 (13)
Asthma duration, yr	9 (0-69)	9 (0-65)	9 (0-63)
FEV ₁ , L	2.14 (0.64-4.02)	2.10 (0.62-4.50)	2.13 (0.65-4.28)
EV ₁ , % predicted normal	73 (49-100)	73 (46-108)	73 (43–108)
FEV ₁ reversibility, %	21 (3-77)	21 (12-75)	21 (2-89)
CS dose at entry,* µq/day	620 (100-1000)	598 (200-1,000)	619 (200-1,200)
inhaled LABA use at study entry	256 (28)	258 (29)	250 (27)
Reliever use, number of inhalations/day	1.69 (0.0-7.0)	1.69 (0.0-9.4)	1.74 (0.0-8.0)
Reliever use, number of inhalations/night	0.72 (0.0-3.7)	0.73 (0.0-6.6)	0.72 (0.0-5.7)
Asthma symptom score (scale 0–6)	1.5 (0.0-5.6)	1.4 (0.0-5.2)	1.5 (0.0-6.0)
Symptom-free days, %	23.5 (0-100)	24.0 (0-100)	23.1 (0-100)
Reliever-free days, %	8.8 (0-100)	8.3 (0-100)	8.2 (0-100)
Asthma control days, %	5.6 (0-90)	5.9 (0-80)	5.4 (0-90)
Awakenings, % of nights	20.6 (0-100)	20.2 (0-100)	21.8 (0-100)


 $\label{eq:linear} \begin{array}{l} \textit{Definition of abbreviations: Bud} = \textit{budesonide; form} = \textit{formoterol; ICS} = \textit{inhaled corticosteroids; LABA} = \textit{long-acting } \beta_{2^{*}}\textit{agonist; SABA} = \textit{short-acting } \beta_{2^{*}}\textit{agonist.} \end{array}$

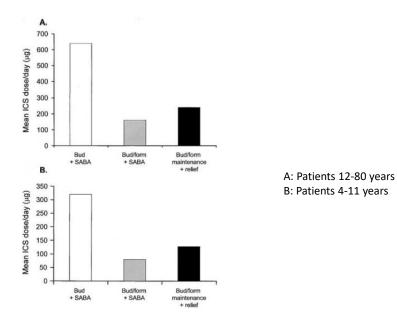

All values are presented as absolute numbers or as mean (range), except asthma duration (median).

*Values are a combination of metered and delivered doses.


¹ Includes combinations of ICS/LABA and LABA.

O'Byrne PM, et al. Am J Respir Crit Care Med. 2005

O'Byrne PM, et al. Am J Respir Crit Care Med. 2005



O'Byrne PM, et al. Am J Respir Crit Care Med. 2005

TABLE 2. CLINICAL OUTCOMES

					p Values	
Variable	Bud + SABA	Bud/form + SABA	Bud/form Maintenance + Relief	Bud/form + SABA vs. Bud + SABA	Bud/form Maintenance + Relief vs. Bud + SABA	Bud/form Maintenance + Reliel vs. Bud/form + SABA
Severe exacerbations including PEF falls						
Patients with event, %*	28	27	16	0.74	< 0.001	< 0.001
Events/patient/year [†]	0.68	0.68	0.36	0.98	< 0.001	< 0.001
Severe exacerbations resulting in medical intervention						
Patients with event, %*	19	21	- 11	0.37	< 0.001	< 0.001
Events/patient/year*	0.35	0.40	0.19	0.11	< 0.001	< 0.001
Daily control measures						
Daytime symptom score [‡]	0.59	0.50	0.48	< 0.001	< 0.001	0.12
Night-time symptom score [‡]	0.42	0.36	0.31	0.01	< 0.001	< 0.001
Reliever use, inhs/day	1.03	0.84	0.73	< 0.001	< 0.001	< 0.001
Reliever use, inhs/night	0.43	0.37	0.28	0.003	< 0.001	< 0.001
Symptom-free days, %	46	53	54	< 0.001	< 0.001	0.52
Reliever-free days, %	45	54	55	< 0.001	< 0.001	0.60
Asthma control days, %5	37	44	45	< 0.001	< 0.001	0.64
Awakenings, % of nights	12	12	9	0.60	< 0.001	< 0.001
Mild exacerbation days, %1	20	23	17	0.06	0.03	< 0.001
Morning PEF, L/min	339	346	355	< 0.001	< 0.001	< 0.001
Evening PEF, L/min	345	349	360	< 0.001	< 0.001	< 0.001
FEV1, L	2.41	2.43	2.51	0.09	< 0.001	< 0.001

O'Byrne PM, et al. Am J Respir Crit Care Med. 2005

O'Byrne PM, et al. Am J Respir Crit Care Med. 2005

		Number of Patie	nts (%)
	Bud + SABA $(n = 925)$	Bud/form + SABA $(n = 906)$	Bud/form Maintenance + Relie $(n = 922)$
Respiratory			
infection	182 (20)	144 (16)	158 (17)
Pharyngitis	86 (9)	88 (10)	88 (10)
Rhinitis	76 (8)	72 (8)	80 (9)
Bronchitis	76 (8)	61 (7)	51 (6)
Sinusitis	33 (4)	39 (4)	43 (5)
Headache	42 (5)	35 (4)	31 (3)
harmacologically predictable events			
Tremor	19 (2)	18 (2)	20 (2)
Palpitation	3 (< 0.5)	11 (1)	10 (1)
Tachycardia	3 (< 0.5)	4 (< 0.5)	5 (0.5)
Candidiasis	10(1)	6 (1)	9 (1)
Dysphonia	12(1)	13 (1)	11 (1)

TABLE 3. COMMON ADVERSE EVENTS BY TYPE (\geqslant 5% INCIDENCE) AND ANY PHARMACOLOGICALLY PREDICTABLE ADVERSE EVENTS

Definition of abbreviations: Bud = budesonide; form = formoterol; SABA = short-acting β_2 -agonist.

O'Byrne PM, et al. Am J Respir Crit Care Med. 2005

Effect of budesonide in combination with formoterol for reliever therapy in asthma exacerbations: a randomised controlled, double-blind study

Klaus F Rabe, Tito Atienza, Pál Magyar, Per Larsson, Carin Jorup, Umesh G Lalloo

Lancet. 2006 Aug 26;368(9537):744-53

	Terbutaline as-needed group (n=1141)	Formoterol as-needed group (n=1140)	Budesonide-formoterol as- needed group (n=1113)
Men, n (%)	450 (39%)	458 (40%)	437 (39%)
Age, years	43 (12-83)	42 (12-81)	42 (12-89)
Median (range) asthma duration, years	10 (1-69)	10 (1-77)	9 (0-64)
FEV, L	2.16 (0.68-4.58)	2.20 (0.74-4.58)	2.21(0.61-4.68)
FEV ₁ (pre-terbutaline), % predicted	72 (39†–100)	72 (38†-115†)	72 (30†-110†)
FEV, reversibility, %	24 (11†-90)	24 (0†-96)	24 (6†-132)
ICS dose at entry, µg/day	751 (250†-1600)	758 (320†-1600)	757 (160†-1600)
Inhaled LABA use at entry, % of patients	59%	59%	59%
Mean daily asthma control measures ‡			
Total asthma symptom score (scale 0-6)	1-74 (0-00-6-00)	1.70 (0.00-6.00)	1.71 (0.00-5.71)
Reliever use, number of inhalations per 24 h	1.9 (0-3-9-7)	1.9 (0.0-9.1)	1.8 (0.0-8.9)
Nights with awakenings, %	30-3 (0-100)	28.0 (0-100)	31.1 (0-100)
Asthma-control days§, %	8-3 (0-50)	8-3 (0-80)	9.2 (0-90)
ACQ-5¶	1.9 (0-4.8)	1.9 (0-5.4)	1.9 (0-4.8)

Table 1: Baseline characteristics of patients using maintenance budesonide-formoterol plus alternative reliever medications*

Rabe KF, et al. Lancet. 2006

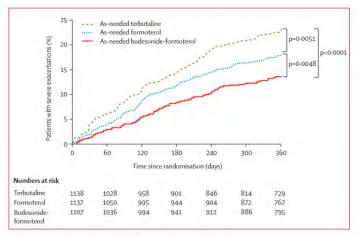


Figure 2: Kaplan-Meier plot of time to first severe asthma exacerbation

Time to first severe asthma exacerbation defined as a deterioration in asthma resulting in hospitalisation, emergency room treatment, or the need for oral steroids for 3 days or more because of asthma (as judged by investigator). Patients received maintenance budesonide-formoterol 160/4-5 µg, one inhalation twice daily, plus one of the following for as-needed relief: additional inhalations of budesonide-formoterol 160/4-5 µg; formoterol 4-5 µg; or terbutaline 0-4 mg. Significant between-group differences were derived from a log-rank test.

Rabe KF, et al. Lancet. 2006

	Reliever medicati	on group		Treatment compariso	n of hazard ratios (95% CI)	
	Terbutaline as- needed (n=1138)	Formoterol as- needed (n=1137)	Budesonide-formoterol as-needed (n=1107)	Formoterol versus terbutaline	Budesonide-formoterol versus terbutaline	Budesonide-formotero versus formoterol
Severe exacerbations (all definitions)						
Patients with event, n (%)	245 (22%)	195 (17%)	143 (13%)	0·76* (0·63-0·92); p=0·004	0.55* (0.45–0.68); p<0.0001	0·73* (0·59-0·90); p=0·0038
Total events (days with events)	377 (3030)	296 (2214)	194 (1353)			
Rate, events per 100 patients per year	37	29	19	0·78† (0·67–0·91); p=0·0012	0.52† (0·44–0·62); p<0·0001	0·67† (0·56–0·80); p<0·0001
Emergency room visits or hospitalisatio	ons					
Patients with event, n (%)	91 (8%)	75 (7%)	54 (5%)	0·79* (0·58-1·07); p=0·12	0·57* (0·41-0·81); p=0·0013	0·73* (0·51–1·04); p=0·079
Total events (days with events)	115 (392)	98 (282)	70 (218)			
Rate, events per 100 patients per year	7	5	4	0·83† (0·63–1.08); p=0.17	0.61† (0.45–0.82); p=0.0010	0·73† (0·54–0·99); p=0·046
Mild exacerbations						
Patients with event, n (%)	887 (78%)	873 (77%)	811 (74%)	0·97* (0·88-1·06); p=0.47	0·88* (0·80-0·97); p=0·0075	0·91* (0·83-1·00); p=0·050
Rate, days per patient per year	69	63	57	0·91† (0·83-1·00); p=0·058	0.82† (0·74–0·91); p=0·0001	0.90† (0·81–1·00); p=0·043

Table 2: Severe and mild asthma exacerbations in patients using maintenance budesonide-formoterol plus alternative reliever medications

Rabe KF, et al. Lancet. 2006

	Change from run	in		Treatment comparison	(95% CI); p*	
	Terbutaline as- needed (n=1138)	Formoterol as- needed (n=1137)	Budesonide-formoterol as-needed (n=1107)	Formoterol versus terbutaline	Budesonide-formoterol versus terbutaline	Budesonide-formotero versus formoterol
Symptom control						
Asthma symptom score (scale 0–6)†	-0.58	-0-57	-0.69	0·01 (-0·05 to 0·07); p=0·72	-0·11 (-0·17 to -0·05); p=0·0007	-0·12 (-0·18 to -0·06); p=0·0002
Reliever use, number of inhalations per 24 h†	-0.64	-0-67	-0-84	-0·03 (-0·11 to 0·05); p=0.48	-0·20 (-0·28 to -0·11); p<0·0001	-0·17 (-0·25 to -0·08); p<0·0001
Nights with awakenings, %†	-13.5%	-14-0%	-16-0%	-0·6 (-2·2 to 1·1); p=0·51	–2·6 (–4·3 to –0·9); p=0.0025	–2·0 (–3·7 to –0·4); p=0·018
Asthma-control days, %†	29-3%	28-8%	31-2%	–0·5 (–3·1 to 2·2); p=0·74	1·9 (-0·7 to 4·6); p=0·16	2·4 (-0·3 to 5·1); p=0·079
ACQ-5‡	-0.49	-0.53	-0.63	-0·04 (-0·10, 0·02); p=0·21	-0·15 (-0·21, -0·08); p<0·0001	-0·11 (-0·17, -0·04) ; p=0·0009
Lung function¶						
FEV ₁ (L)‡	-0.02	0-01	0-06	0·03 (0·001 to 0·05); p=0·043	0·08 (0·05 to 0·10); p<0·0001	0·05 (0·02 to 0·08); p=0·00014
Morning PEF (L/min)†	7.9	10-6	15-3	2·7 (-0·6 to 5·9); p=0·11	7·5 (4·2 to 10·7); p<0·0001	4·8 (1·5 to 8·0); p=0·0040
Evening PEF (L/min)†	7.5	8.5	13-8	0·9 (-2·3 to 4·1); p=0·57	6·3 (3·1 to 9·5); p=0·00014	5·4 (2·1 to 8·6); p=0·0011

All patients received budesonide-formoterol 160/4-5 µg one inhalation twice daily for maintenance therapy. ACQ-5=Asthma Control Questionnaire (5-item symptom and activity version); FEV=forced expiratory volume in 1 s. PEF=peak expiratory flow. *ANOVA. †Data are presented as adjusted mean change from run-in to the treatment period. ‡Data are presented as adjusted mean change from visit 2 (day 0) to the average value of available data during clinic visits.

Table 3: Changes from run-in in symptom control and lung function in patients using maintenance budesonide-formoterol plus alternative reliever medications

Rabe KF, et al. Lancet. 2006

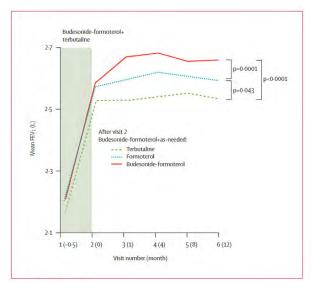
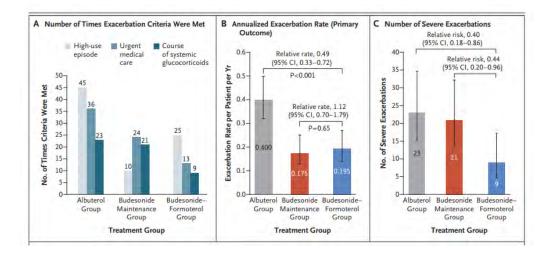


Figure 3: Mean FEV, over time The shaded area represents the run-in period. Patients received maintenance budesonide-formoterol 160/4-5 µg, one inhalation twice daily, plus as-needed terbutaline during run-in. Post-randomisation, patients received budesonide-formoterol 160/4-5 µg 1 inhalation twice daily plus one of the following for as-needed relief: additional inhalations of budesonide-formoterol 160/4-5 µg; formoterol 4-5 µg; or terbutaline 0-4 mg. The following to the formoterol 150/4-5 µg; formoterol 4-5 µg; or terbutaline 0-4 mg. FEV_1 =forced expiratory volume in 1 s.

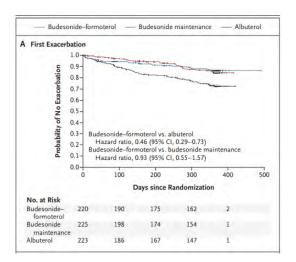
Rabe KF, et al. Lancet. 2006

	Terbutaline as-needed group	Formoterol as-needed group	Budesonide-formoterol as-needed
	(n=1138)	(n=1137)	group (n=1107)
SAEs reported as asthma	26 (2%)	23 (2%)	16 (1%)
DAEs reported as asthma	10(1%)	14 (1%)	1 (0.1%)
Pharmacologically predictable adverse events			
Tremor	2 (0-2%)	4 (0-4%)	1 (0.1%)
Palpitation/tachycardia	4 (0-4%)	6 (0.5%)	7 (0.6%)
Hoarseness	7 (0-6%)	11 (1%)	7 (0.6%)
Oral candidosis*	10 (1%)	11 (1%)	22 (2%)
Dysphonia	0 (0)	1 (0-1%)	0 (0)
te adam about the pie adams much a	and the state of t	the second state design of a second state of the second	
SAE=serious adverse event. DAE=adverse event leadi elated to oral candidosis (ie, pharyngeal candidosis,			nd any adverse event considered closer

ORIGINAL ARTICLE


Controlled Trial of Budesonide–Formoterol as Needed for Mild Asthma

Richard Beasley, D.Sc., Mark Holliday, B.Sc., Helen K. Reddel, Ph.D., Irene Braithwaite, Ph.D., Stefan Ebmeier, B.M., B.Ch., Robert J. Hancox, M.D., Tim Harrison, M.D., Claire Houghton, B.M., B.S., Karen Oldfield, M.B., Ch.B., Alberto Papi, M.D., Ian D. Pavord, F.Med.Sci., Mathew Williams, Dip.Ex.Sci., and Mark Weatherall, F.R.A.C.P., for the Novel START Study Team*


N Engl J Med. 2019 May 23;380(21):2020-2030

Characteristic	Albuterol Group (N = 223)	Budesonide Maintenance Group (N = 225)	Budesonide- Formoterol Group (N = 220)
Age — yr	35.8±14.0	34.9±14.3	36±14.1
Female sex — no. (%)	113 (50.7)	129 (57.3)	122 (55.5)
Current smoker — no. (%)	24 (10.8)	22 (9.8)	18 (8.2)
Patient-reported SABA use in the 4 weeks before enrollment			
No. of occasions per wk			
Mean	3.4±3.3	3.2±3.0	3.8±3.5
Median (IQR)	2 (1-4)	2 (1-4)	3 (1-5)
Range	0-14	0.5-14	0.5-14
Patients who had ≤2 occasions per wk — no. (%)	127 (57.0)	132 (58.7)	105 (47.7)
Puffs per wk			
Mean	6.52±7.83	5.82±5.25	6.98±6.91
Median (IQR)	4 (2-8)	4 (2-7)	4 (2-8)
Range	0-84	0.5-28	0.5-42
No. of hospital admissions for asthma at any time be- fore enrollment — mean per patient	0.3±0.9	0.3±0.9	0.3±1.3
No. of severe exacerbations in the previous 12 mo. — no. (%)		
0	203 (91.0)	208 (92.4)	208 (94.5)
1	20 (9.0)	15 (6.7)	12 (5.5)
2	0	2 (0.9)	0
Any	20 (9.0)	17 (7.6)	12 (5.5)
ACQ-5 score†	1.1±0.7	1.1±0.7	1.1±0.7
On-treatment FEV1 — % of predicted value‡	89.2±13.7	90.3±13.6	89.8±14.1
Median FENO (range) — ppb	40 (5-235)	38 (5-200)	37 (3-300)
Periostin — ng/ml	69.3±28.9	70.6±27.8	70.8±27.0
Blood eosinophil count — ×10 ⁻⁹ per liter	0.3±0.2	0.3±0.2	0.3±0.2

Beasley R, et al. N Engl J Med. 2019

Beasley R, et al. N Engl J Med. 2019

=	1.0	The state of the s				
atio	0.9-	and the second s		Section of the sectio		
cerb	0.8-					
Exa	0.7-					
ere	0.6-					
Sev	0.5-					
No	0.4-					
of	0.3-	Budesonide-form	noterol vs. al	huterol		
		Dudesonnue-ton	noteroi vs. ai	Dutteroi		
oility	0.2-	Hazard ratio, ().38 (95% CI	0.18-0.82)	-later area	
bability	0.2-	Hazard ratio, (Budesonide-form	0.38 (95% CI noterol vs. b	0.18-0.82) udesonide m	aintenance	
Probability of No Severe Exacerbation	0.2-	Hazard ratio, (Budesonide-forr Hazard ratio, (0.38 (95% CI noterol vs. b 0.41 (95% CI	, 0.18–0.82) udesonide m , 0.19–0.90)		
Probability	0.2- 0.1-	Hazard ratio, (Budesonide-form	0.38 (95% CI noterol vs. b	0.18-0.82) udesonide m	aintenance 400	500
Probability	0.2- 0.1-	Hazard ratio, (Budesonide-forr Hazard ratio, (100	0.38 (95% CI noterol vs. b 0.41 (95% CI	, 0.18–0.82) udesonide m , 0.19–0.90) 1 300	400	500
Aillidedord No. at Risk	0.2- 0.1-	Hazard ratio, (Budesonide-forr Hazard ratio, (100	0.38 (95% CI noterol vs. bi 0.41 (95% CI 200	, 0.18–0.82) udesonide m , 0.19–0.90) 1 300	400	500
	0.2- 0.1-	Hazard ratio, (Budesonide–forr Hazard ratio, (100 C	0.38 (95% CI noterol vs. bi 0.41 (95% CI 200	, 0.18–0.82) udesonide m , 0.19–0.90) 1 300	400	500
No. at Risk Budesonide-	0.2- 0.1- 0.0- 0 220 225	Hazard ratio, (Budesonide-forr Hazard ratio, (100 E 197	0.38 (95% CI noterol vs. bi 0.41 (95% CI 200 Days since R	, 0.18–0.82) udesonide m , 0.19–0.90) 1 300 andomizatio	400 5 n	500

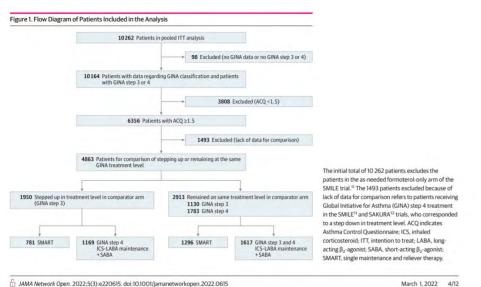
Beasley R, et al. N Engl J Med. 2019

Table 2. Medication Outcomes.*			
Outcome	Albuterol Group (N=223)	Budesonide Maintenance Group (N = 225)	Budesonide– Formoterol Group (N=220)
Glucocorticoid use			
No. of inhaled glucocorticoid-containing actuations per day			
Mean	NA	1.11±0.56	0.53±0.54
Median (IQR)	NA	1.23 (0.66-1.57)	0.37 (0.15-0.73)
Range	NA	0-2.01	0-3.95
Daily budesonide dose — µg			
Mean	NA	222±113	107±109
Median (IQR)	NA	247 (132-314)	73 (31-146)
Range†	NA	0-402	0-790
Oral glucocorticoid use, prednisone — mg	17.4±59.8	14.5±51.0	7.5±40.2
No. of β_2 -agonist-containing actuations per day			
Mean	1.01±1.60	0.52±1.03	0.53±0.54
Median (IQR)	0.50 (0.18-1.18)	0.18 (0.06-0.46)	0.37 (0.15-0.73)
Range	0.0-16.3	0.0-8.7	0-3.95

* Plus-minus values are means ±SD. Inhaled glucocorticoid and β_{2} -agonist use was determined with the use of electron-ic monitoring of the trial inhalers. NA denotes not applicable. † The range refers to the minimum mean daily dose and the maximum mean daily dose.

Beasley R, et al. N Engl J Med. 2019

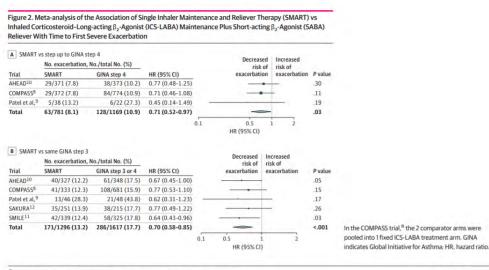
fi



Original Investigation | Pulmonary Medicine

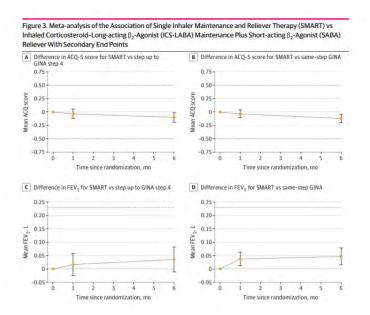
Evaluation of Budesonide-Formoterol for Maintenance and Reliever Therapy Among Patients With Poorly Controlled Asthma A Systematic Review and Meta-analysis

Richard Beasley, DSc; Tim Harrison, MD; Stefan Peterson, PhD; Per Gustafson, MD, PhD; Angus Hamblin, BA; Thomas Bengtsson, MSc; Malin Fagerås, PhD

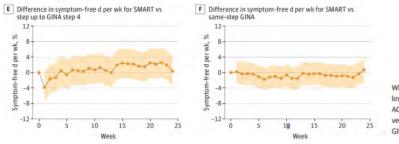

JAMA Netw Open. 2022 Mar 1;5(3).

JAMA Network Open. 2022;5(3):e220615. doi:10.1001/jamanetworkopen.2022.0615

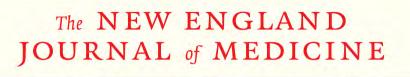
Beasley R, et al. JAMA Netw Open. 2022



March 1, 2022 6/12


🔓 JAMA Network Open. 2022;5(3):e220615. doi:10.1001/jamanetworkopen.2022.0615

Beasley R, et al. JAMA Netw Open. 2022


Beasley R, et al. JAMA Netw Open. 2022

43

Whiskers and shading represent 95% CIs; and dotted lines, the minimal clinically important differences. ACQ-5 indicates Asthma Control Questionnaire 5-item version; FEV,, forced expiratory volume in 1 second; GINA, Global Initiative for Asthma.

Beasley R, et al. JAMA Netw Open. 2022

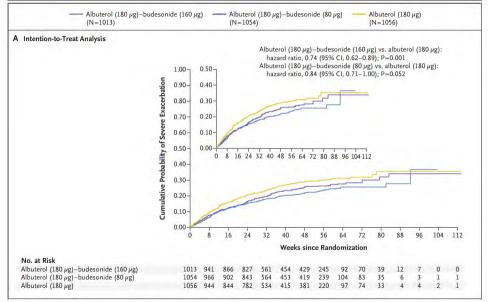
ESTABLISHED IN 1812

JUNE 2, 2022

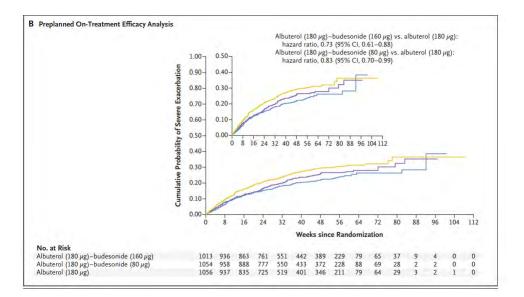
VOL. 386 NO. 22

Albuterol–Budesonide Fixed-Dose Combination Rescue Inhaler for Asthma

Alberto Papi, M.D., Bradley E. Chipps, M.D., Richard Beasley, D.Sc., Reynold A. Panettieri, Jr., M.D., Elliot Israel, M.D., Mark Cooper, M.Sc., Lynn Dunsire, M.Sc., Allison Jeynes-Ellis, M.D., Eva Johnsson, M.D., Robert Rees, Ph.D., Christy Cappelletti, Pharm.D., and Frank C. Albers, M.D.


Papi A, et al. N Engl J Med. 2022

Characteristic	Albuterol (180 μg)– Budesonide (160 μg) (N=1013)	Albuterol (180 μg)– Budesonide (80 μg) (N = 1054)	Albuterol (180 μg) (N = 1056)	All Patients (N = 3123)
Age				
Mean — yr	50.6±15.1	48.5±16.7	49.1±17.2	49.4±16.4
Distribution — no. (%)				
≥4 to <12 yr	0	41 (3.9)	42 (4.0)	83 (2.7)
≥12 to <18 yr	34 (3.4)	32 (3.0)	34 (3.2)	100 (3.2)
≥18 to <65 yr	787 (77.7)	804 (76.3)	783 (74.1)	2374 (76.0)
≥65 yr	192 (19.0)	177 (16.8)	197 (18.7)	566 (18.1)
Female sex — no. (%)	645 (63.7)	685 (65.0)	694 (65.7)	2024 (64.8)
Race or ethnic group — no. (%)				
White	818 (80.8)	847 (80.4)	868 (82.2)	2533 (81.1)
Black	139 (13.7)	141 (13.4)	137 (13.0)	417 (13.4)
Asian	29 (2.9)	33 (3.1)	23 (2.2)	85 (2.7)
American Indian or Alaska Native	1 (0.1)	1 (0.1)	0	2 (0.1)
Other	26 (2.6)	32 (3.0)	28 (2.7)	86 (2.8)
Hispanic or Latinx — no. (%)				
Yes	233 (23.0)	260 (24.7)	315 (29.8)	808 (25.9)
No	780 (77.0)	794 (75.3)	741 (70.2)	2315 (74.1)


Papi A, et al. N Engl J Med. 2022

Geographic region — no. (%)				
North America, Western Europe, and South Africa	536 (52.9)	556 (52.8)	563 (53.3)	1655 (53.0)
South America and rest of Europe	477 (47.1)	498 (47.2)	493 (46.7)	1468 (47.0)
Prebronchodilator FEV ₁				
Mean volume — liters†	1.9±0.6	1.9 ±0.6	1.9±0.6	1.9±0.6
Mean percent of predicted value*	63.4±12.8	64.0±13.7	64.4±13.3	63.9±13.3
Aean reversibility in $FEV_1 - \%$ ‡	27.7±17.2	27.2±14.2	27.8±15.9	27.6±15.8
Aaintenance treatment — no. (%)				
Low-dose inhaled glucocorticoid–LABA or medium-dose inhaled glucocorticoid	314 (31.0)	334 (31.7)	308 (29.2)	956 (30.6)
Medium-dose inhaled glucocorticoid–LABA or high-dose inhaled glucocorticoid	385 (38.0)	435 (41.3)	441 (41.8)	1261 (40.4)
High-dose inhaled glucocorticoid–LABA	295 (29.1)	267 (25.3)	285 (27.0)	847 (27.1)
Missing	19 (1.9)	18 (1.7)	22 (2.1)	59 (1.9)
Severe asthma exacerbations in the 12 mo before screening — no. (%)				
1	788 (77.8)	822 (78.0)	840 (79.5)	2450 (78.5)
2	185 (18.3)	185 (17.6)	164 (15.5)	534 (17.1)
3	27 (2.7)	38 (3.6)	45 (4.3)	110 (3.5)
≥4	13 (1.3)	9 (0.9)	7 (0.7)	29 (0.9)

Papi A, et al. N Engl J Med. 2022

Papi A, et al. N Engl J Med. 2022

Papi A, et al. N Engl J Med. 2022

Analysis	Intention-to-Treat Analysis				Preplanned On-Treatment Efficacy Analysis			
	Adults and Adolescents†		Adults, Adolescents, and Children\$		Adults and Adolescents†		Adults, Adolescents, and Children:	
	Albuterol (180 µg)- Budesonide (160 µg)	Albuterol (180 µg)	Albuterol (180 µg)- Budesonide (80 µg)	Albuterol (180 µg) Alone	Albuterol (180 µg)- Budesonide (160 µg)	Albuterol (180 µg)	Albuterol (180 µg)- Budesonide (80 µg)	Albuterol (180 µg)
Annualized rate of severe asthma exacerbation								
Patients - no.	1013	1014	1054	1056	1013	1014	1054	1056
Severe exacerbations - no.	345	427	372	441	334	413	354	426
Annualized rate (95% CI)	0.43 (0.33–0.58)	0.58 (0.44-0.77)	0.48 (0.37–0.63)	0.60 (0.46-0.79)	0.45 (0.34-0.60)	0.59 (0.44-0.78)	0.49 (0.37-0.64)	0.61 (0.46–0.80)
Rate ratio (95% CI)	0.75 (0.61-0.91)	Reference	0.81 (0.66-0.98)	Reference	0.76 (0.62-0.93)	Reference	0.80 (0.66-0.98)	Reference
Annualized total dose of systemic glucocorticoids								
Patients — no.	1012	1011	1052	1052	1012	1011	1052	1052
Median value (5th-95th percentile) mg/yr	0.0 (0.0-459.2)	0.0 (0.0-484.3)	0.0 (0.0-494.4)	0.0 (0.0-600.8)	0.0 (0.0-496.1)	0.0 (0.0-622.1)	0.0 (0.0-487.0)	0.0 (0.0-615.9)
Mean value — mg/yr	83.6±247.7	130.0±630.3	94.7±318.2	127.6±619.8	86.2±262.9	129.3±657.2	95.5±335.4	127.1±646.2
Response analysis at wk 24¶								
ACQ-5								
Patients no.	1013	1014	1052	1055	1013	1014	1052	1055
Patients with response - no. (%)	682 (67.3)	636 (62.7)	690 (65.6)	656 (62.2)	677 (66.8)	630 (62.1)	681 (64.7)	650 (61.6)
Odds ratio (95% CI)	1.22 (1.01–1.46)	Reference	1.15 (0.96–1.37)	Reference	1.22 (1.02-1.47)	Reference	1.13 (0.95–1.35)	Reference
AQLQ+12								
Patients - no.	994	993	987	NA	994	993	987	NA
Patients with response	515 (51.8)	464 (46.7)	496 (50.3)	NA	508 (51.1)	461 (46.4)	489 (49.5)	NA
Odds ratio (95% CI)	1.25 (1.04-1.50)	Reference	1.13 (0.94-1.36)	NA	1.23 (1.02-1.48)	Reference	1.11 (0.93–1.34)	NA

Event	Albuterol (180 μg)– Budesonide (160 μg) (N = 1015)	Albuterol (180 μg)– Budesonide (80 μg) (N = 1055)	Albuterol (180 μg) (N = 1057)		
	number of patients (percent)				
Any adverse event	469 (46.2)	497 (47.1)	490 (46.4)		
Nasopharyngitis	76 (7.5)	61 (5.8)	54 (5.1)		
Headache	44 (4.3)	50 (4.7)	50 (4.7)		
Covid-19	43 (4.2)	52 (4.9)	46 (4.4)		
Upper respiratory tract infection	26 (2.6)	31 (2.9)	26 (2.5)		
Bronchitis	25 (2.5)	27 (2.6)	28 (2.6)		
Hypertension	22 (2.2)	27 (2.6)	26 (2.5)		
Asthma	18 (1.8)	20 (1.9)	35 (3.3)		
Back pain	27 (2.7)	23 (2.2)	20 (1.9)		
Influenza	21 (2.1)	23 (2.2)	14 (1.3)		
Sinusitis	15 (1.5)	17 (1.6)	24 (2.3)		

* Adverse events are sorted in decreasing total frequency of preferred term in the *Medical Dictionary for Regulatory* Activities, version 24.0. Patients with multiple events in the same category are counted only once in that category.

Papi A, et al. N Engl J Med. 2022

Take home points

- SMART works
- It is associated with a reduction in time to severe exacerbation, reduced rate of severe exacerbations, improvements in FEV₁
- Overall, patients get lower doses of ICS and OCS

References

- https://www.nhlbi.nih.gov/resources/2020-focused-updates-asthma-management-guidelines
- <u>https://www.nhlbi.nih.gov/resources/clinician-guide-2020-focused-updates-asthma-management-guidelines</u>
- https://www.nhlbi.nih.gov/resources/at-glance-2020-focused-updates-asthma-managementguidelines
- https://ginasthma.org/wp-content/uploads/2022/05/GINA-Main-Report-2022-FINAL-22-05-03-WMS.pdf
- https://www.nhlbi.nih.gov/files/docs/guidelines/asthma_qrg.pdf
- https://www.guidelinesinpractice.co.uk/respiratory/gina-asthma-strategy-whats-new-for-2021/
- Reddel HK, Bateman ED, Schatz M, Krishnan JA, Cloutier MM. A Practical Guide to Implementing SMART in Asthma Management. J Allergy Clin Immunol Pract. 2022 Jan;10(1S):S31-S38. doi: 10.1016/j.jaip.2021.10.011. Epub 2021 Oct 16.
- O'Byrne PM, Bisgaard H, Godard PP, Pistolesi M, Palmqvist M, Zhu Y, Ekström T, Bateman ED. Budesonide/formoterol combination therapy as both maintenance and reliever medication in asthma. Am J Respir Crit Care Med. 2005 Jan 15;171(2):129-36. doi: 10.1164/rccm.200407-884OC. Epub 2004 Oct 22

53

References

- Rabe KF, Atienza T, Magyar P, Larsson P, Jorup C, Lalloo UG. Effect of budesonide in combination with formoterol for reliever therapy in asthma exacerbations: a randomised controlled, double-blind study. Lancet. 2006 Aug 26;368(9537):744-53. doi: 10.1016/S0140-6736(06)69284-2.
- Beasley R, Holliday M, Reddel HK, Braithwaite I, Ebmeier S, Hancox RJ, Harrison T, Houghton C, Oldfield K, Papi A, Pavord ID, Williams M, Weatherall M; Novel START Study Team. Controlled Trial of Budesonide-Formoterol as Needed for Mild Asthma. N Engl J Med. 2019 May 23;380(21):2020-2030. doi: 10.1056/NEJMoa1901963. Epub 2019 May 19.
- Beasley R, Harrison T, Peterson S, Gustafson P, Hamblin A, Bengtsson T, Fagerås M. Evaluation of Budesonide-Formoterol for Maintenance and Reliever Therapy Among Patients With Poorly Controlled Asthma: A Systematic Review and Meta-analysis. JAMA Netw Open. 2022 Mar 1;5(3):e220615. doi: 10.1001/jamanetworkopen.2022.0615. Erratum in: JAMA Netw Open. 2022 May 2;5(5):e2216068.
- Papi A, Chipps BE, Beasley R, Panettieri RA Jr, Israel E, Cooper M, Dunsire L, Jeynes-Ellis A, Johnsson E, Rees R, Cappelletti C, Albers FC. Albuterol-Budesonide Fixed-Dose Combination Rescue Inhaler for Asthma. N Engl J Med. 2022 Jun 2;386(22):2071-2083. doi: 10.1056/NEJMoa2203163. Epub 2022 May 15.

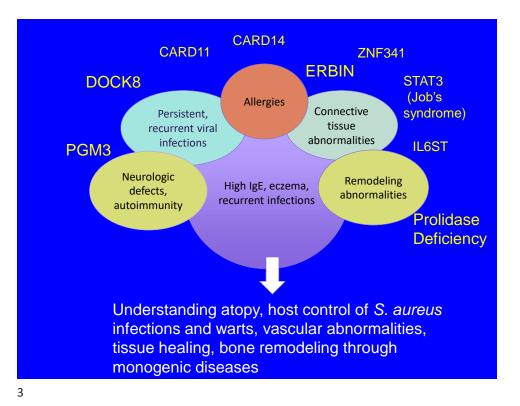
PENNSYLVANIA ALLERGY & ASTHMA ASSOCIATION

73RD DAA ANNUAL MEETING

The Hyper IgE Syndromes

Presented by: Alexandra Freeman, MD

Friday, June 24, 2022 10:45 a.m. – 11:30 a.m.

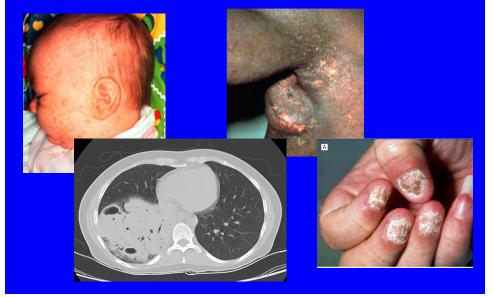


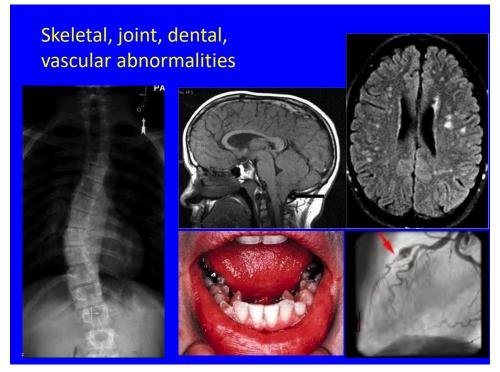
The Patient with Eczema and an elevated Serum IgE: when to suspect a Hyper IgE Syndrome

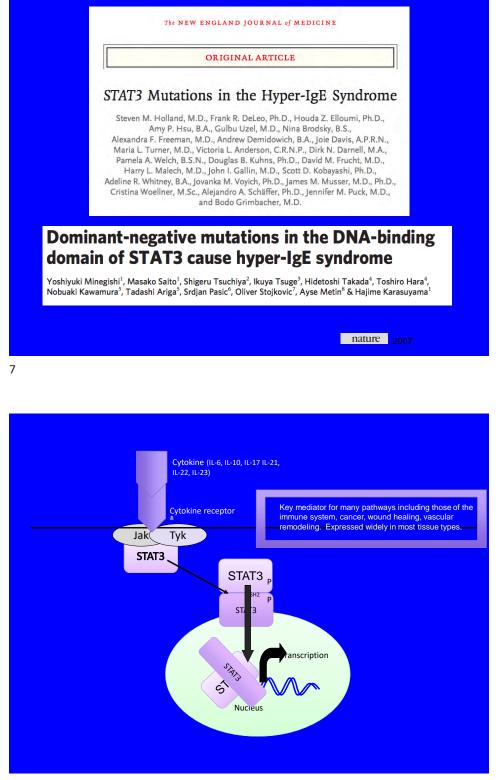
Alexandra Freeman MD Director, Primary Immune Deficiency Clinic Laboratory of Clinical Immunology and Microbiology

Approach to the patient with Elevated Serum IgE and eczema

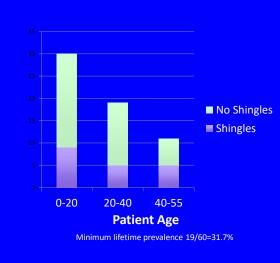
- Most of the time atopy, without a "hyper IgE syndrome"
- Monogenic causes related to Primary immune deficiencies
 - Many causes of immune dysregulation can cause mildly elevated IgE (IgE hundreds)
 - The Hyper IgE syndromes are associated with eczema, recurrent skin and lung infections
 - Unique features to consider in the evaluation.




STAT3 deficient Hyper IgE Syndrome (Autosomal dominant HIES; Job's syndrome)


So Satan went forth from the presence of the Lord, and smote Job with sore boils from the sole of his foot unto his crown."

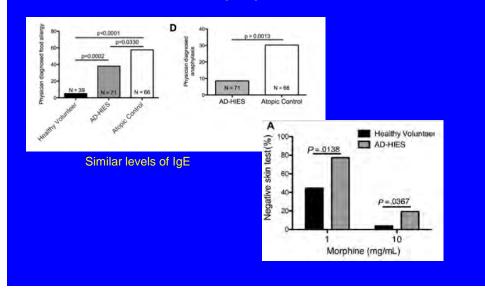
Staphylococus aureus and Candida epithelial infections in LOF STAT3

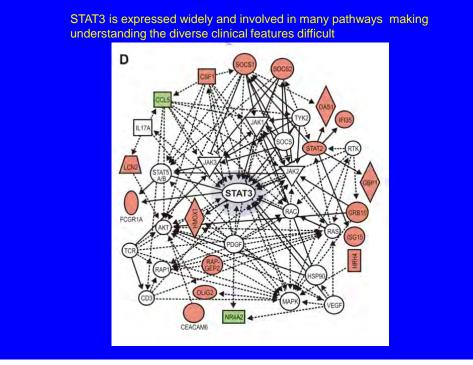

Epithelial/mucosal infection susceptibility: Lack of Th17 cells

9

Decreased memory T and B Cells

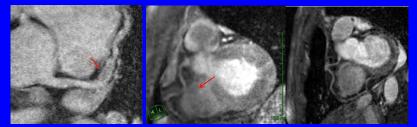
Zoster reactivation is increased in HIES patients and occurs at young ages





Siegel et al, Immunity 2011

AD-HIES with less food allergy and anaphylaxis


A 43 year old with an MI

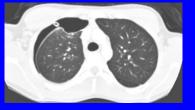
Then, 10 years later with a life threatening GI bleed from a mesenteric artery aneurysm Now, 4 years since GI bleed.....surgery for severe spine disease...

13

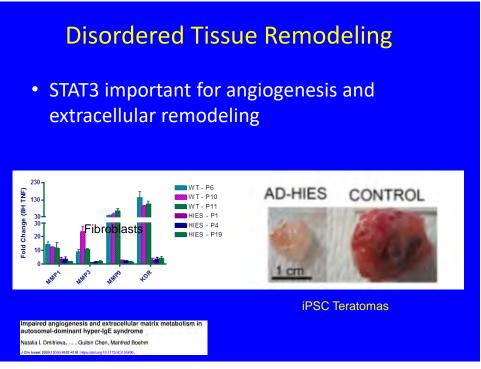
Middle sized arterial aneurysm

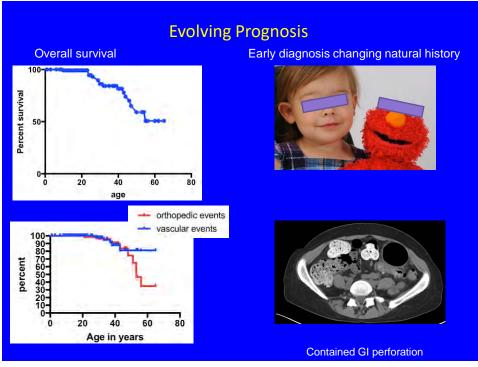
Left anterior descending artery dilation and aneurysm, and RCA Tortuosity

Coronary arteries: myocardial infarction Cerebral arteries: subarachnoid hemorrhages Bronchial arteries: massive pulmonary bleeds Mesenteric arteries: GI bleeds



AD-HIES abnormal tissue remodeling




Pneumatocoele with aspergilloma

Bronchopleural fistulae

Freeman et al, J of Clin Immunology 2013

17

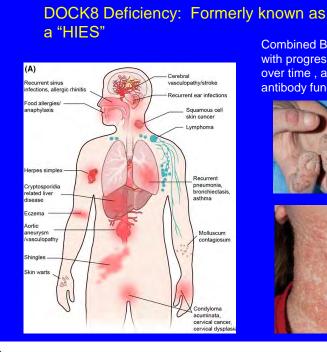
STAT3 deficient HIES

- Infection susceptibility (Candida, Staph) PLUS connective tissue abnormalities- teeth, bones, joints
- Destructive lung disease
- Less allergy than expected for height of serum IgE

Diagnosis: Sequence STAT3 in setting of infections/connective tissue phenotype

Approach to Care

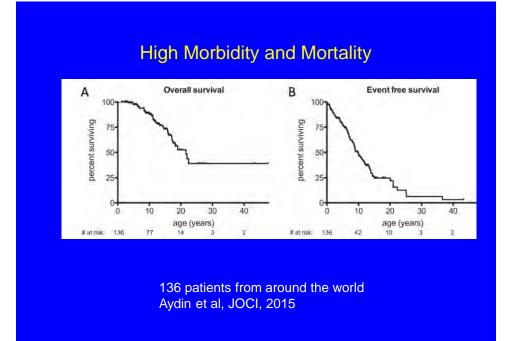
- Supportive with suppressive antimicrobials
 TMP/SMX typically, antifungals
- Antiseptics (i.e.dilute bleach baths) to control eczema, reduce *S. aureus* colonization
- Consideration of dupilumab for significant eczema


 James et al, JACI: in practice, 2022. With UPMC!
- Consideration of IgG supplementation- normal IgG levels, poor specific antibody
- Bone and dental health
- Low suspicion of infection

What is the role for HSCT?

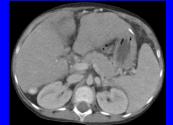
- Seems to make sense in some cases
 - four patients transplanted at NIH- all at worse end of spectrum
 - About 15-20 patients transplanted worldwide
 - Some good outcomes being reported
 - Worse with mixed chimerism?
- Hard to predict from mutation who will do well and who won't
- But understanding what is driving the different parts of the clinical phenotype is important
 - Will the infection phenotype be improved? Probably
 - Will the bone phenotype be improved? Maybe
 - Will the vascular phenotype be improved? Maybe not
 - Lung healing if there a post- transplant pneumonia? Unknown

21



Combined B and T cell defect with progressive T lymphopenia over time, and worsening specific antibody function

DOCK8 Pathogenesis


- DOCK8: involved in actin cell cytoskeleton
- Highly expressed immune system- very low levels in other organs, and not in endothelial cells
- Lymphocytes and dendritic cells have trouble with movement in matrices such as skin (vasculature?) due to abnl cytoskeleton
 - Cytothripsis: Cells fragment in tissues
 - Prevents generation of memory CD8 T cells in the skin

Complications with age

15 year old with bronchiectasis

11 year old with cryptosporidia related liver disease, portal hypertension (Liver disease in about 25% of cohort)

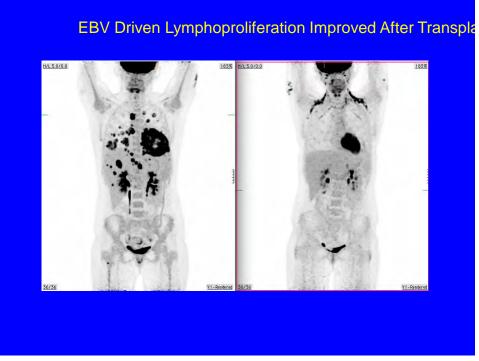
17 year old with persistent HSV

15 year old with Burkitt's lymphoma Malignancy in about 25% of cohort

Vascular Complications with age: about 15% in our cohort

19 year old with cerebral vasculopathy and stroke

19 year old with bilateral renal artery stenosis


24 year old with large aortic aneurysm

Bone marrow transplant for DOCK8 deficiency

27

Resolution of eczema: wrapping pretransplant to improve skin barrier, diminish infection risk

29

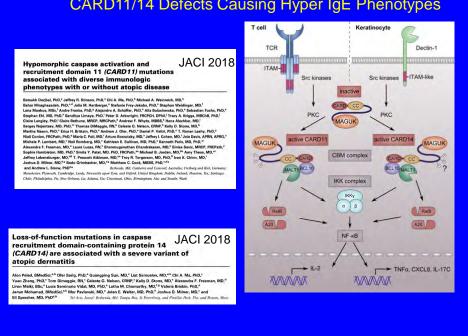
DOCK8 Deficiency

- Variable IgE, eczema, allergies
- Poor control of skin viral control, EBV viremia
- Malignancy risk increases through teen years, young adulthood
- T lymphopenia, poor specific antibodies
- Can be difficult to diagnosis at younger ages
- Genetics- need to look for mutations and deletions

Recessive hypomorphic mutations in *PGM3* glycosylation disorder

- Allergy
 - high IgE; atopic dermatitis; asthma; food and environmental allergies; EGID; ABPA
- Infections
 - chronic otitis externa
 - staph and URI/pneumonia
 - lung, cutaneous, parotid, periodontal abscesses
- Autoimmunity
 - increased T_H17; elevated IgG; psoriatic lesions
 - Lymphoproliferative disease
 - Evan's syndrome
 - lymphoma
- Neurocognitive impairment
 - developmental delay, ataxia, discoordination and speech abnormalities/dyspraxia
 - febrile seizures


```
GlcNac-6-PO4 GlcNac-1-PO4
```

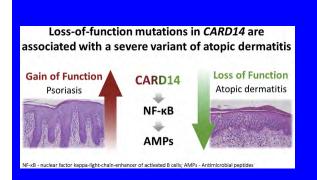

31

Think about PGM3 Deficiency

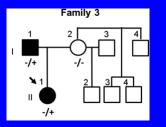
- Eczema, recurrent bacterial and viral infections
- Developmental delays
- Lymphopenia and neutropenia

TREATMENT

- Supportive
- Consideration of HSCT (maybe 4 known cases?)
 - Partially corrective
- Sugar supplementation?

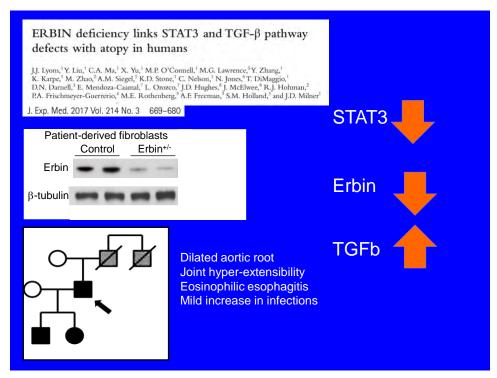


CARD11/14 Defects Causing Hyper IgE Phenotypes


CARD11: one gene, multiple phenotypes

- GOF mutations: B cell lymphoproliferative disease
- Somatic GOF: lymphoma •
- Bi-allelic LOF: SCID phenotype
- Hypomorphic heterozygous LOF Mutations-ATOPY!
 - Increased skin viral infections (molluscum), sinopulmonary infections
 - Some with hypogammaglobulinemia, autoimmunity, infrequent lymphoma

Dermatologic Conditions with CARD14 mutations



Peled et al, JACI 2018

Severe eczema Asthma, pneumonias? Anaphylaxis, food allergy IgE thousands Cutaneous infections Retained primary teeth Fractures (steroidsosteoporosis?)

35

ZNF341 Deficiency

- Autosomal recessive
- Transcription factor that binds to a STAT3 promoter, thus causes decreased STAT3 transcription when present.
- More inflammatory, less connective tissue
 phenotype
 science IMMUNOLOGY | RESEARCH ARTICLE

IMMUNODEFICIENCIES

A recessive form of hyper-IgE syndrome by disruption of ZNF341-dependent STAT3 transcription and activity

37

IL6ST Loss of function mutations

- Heterozygous and homozygous LOF Mutations described in several patients.
- IL-6 receptor that then signals through STAT3
- Significant ABPA, destructive lung disease
- Some connective tissue phenotype

	DN STAT3	DOCK8	PGM3	LOF CARD11	LOF CARD14*	ZNF341*	IL6ST Biallelic*	DN IL6ST*	IL6R*
Allergic hypersensitivity	++	+/+++	+++	+++	+++	+	ND	+	+
Eczema	++	+/+++	++	+++	+++	+++	++	+	+++
Bronchiectasis/ pneumatoceles	++	++	++	+	-	++	+++	+++	+
Mucocutaneous candidiasis	+++	+	-	-	-	+++	ND	+	-
Cutaneous viral infections	+	+++	++	++	+	-	-	-	-
Neurologic deficits	+/-	+/-	+++	-	-	-	-	-	-
Vascular abnormalities	++	+	+	-	-	-	-	-	-
Skeletal/connective tissue changes	+++	-	++	-		+	+++	+	-
Retained primary teeth	+++	-	-	-	-	-	ND	++	-
Immunoglobulins (except IgE)	Typically normal	Low IgM	High	Some low IgG	Some low IgG	Some increased IgG	Normal	Normal	Low normal/slight decreased Ig0
T Lymphopenia	+	++	++	+	-	-	-	-	-
Lymphoma	+	++	+	++	-	-	-	-	

39

Thanks

Steve Holland and Lab Joie Davis Amy Hsu Jenna Bergerson Amanda Urban Christine Lafeer Amanda Urban Dirk Darnell Ana Agharahimi Justina Pfister

All of the patients with HIES and their families

- Ken Olivier, NHLBI
- Josh Milner, Columbia Hospital
- Jon Lyons, NIAID
- Helen Su and Lab, NIAID
- Nirali Shah, Corina Gonzalez and Dennis Hickstein, NCI
- Ian Myles, NIAID
- Manfred Boehm, NHLBI
- Ahmed Gharib, NIDDK
- Heidi Kong, NCI
- Theo Heller, NIDDK
- Niki Moutsopoulos, NIDCR

Deletion of STAT3 V463, 1387delGTG PENNSYLVANIA ALLERGY & ASTHMA ASSOCIATION

73RD PAAA ANNUAL MEETING

The Microbiome and Food Allergy

Presented by: Supinda Bunyavanich, MD, MPH, MPhil

> Friday, June 24, 2022 11:30 a.m. – 12:15 p.m.

PAAA does not have permission to share slides.

Pennsylvania Allergy & Asthma Association

PENNSYLVANIA ALLERGY & ASTHMA ASSOCIATION

Mayer A. Green, MD Allergy Foundation Memorial Lecture The Promise and Limits of Food Allergen Immunotherapy

Presented by: Carla Davis, MD

Friday, June 24, 2022 12:15 p.m. – 1:00 p.m.

The Promise and Limits of Food Allergen Immunotherapy

Mayer A. Green Allergy Foundation Memorial Lecture Pennsylvania Allergy and Asthma Association

June 24, 2022

Carla M. Davis, MD Professor of Pediatrics Chief, Immunology, Allergy, and Retrovirology Division Director, Food Allergy Program Texas Children's Hospital Baylor College of Medicine

Disclosures

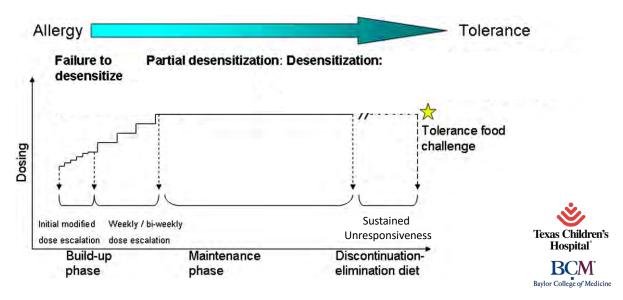
- In relation to this presentation, I declare the following, real or perceived conflicts of interest:
 - Research Grants: National Institute of Allergy and Infectious Disease, DBV Technologies, Aimmune Therapeutics, Food Allergy Research and Education, Allergenis, Regeneron Pharmaceuticals, Pfizer, The Scurlock Foundation
 - Consultant/Advisory Board: Moonlight Therapeutics

Baylor College of Medicine

Outline

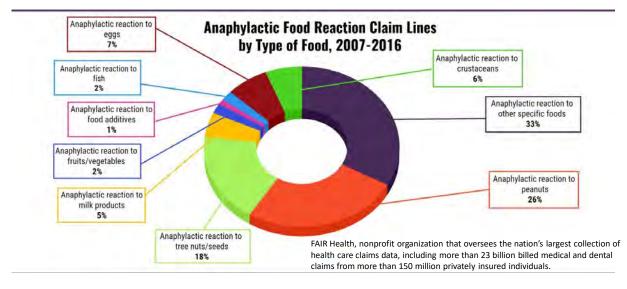
- History of Food Allergen Immunotherapy
- Current Protocols
 - Oral, Sublingual, and Epicutaneous Food Immunotherapy
- Evaluation of Sustained Unresponsiveness to Food
- Limitations of Immunotherapy Protocols
- Promise for the Future of Immunotherapy

History of Allergen Immunotherapy

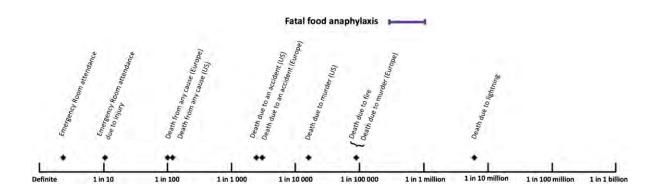

3

4

History of Modern Food Allergen Immunotherapy



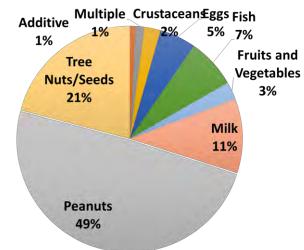
Schematic of Food IT Protocols



Nowak-Węgrzyn A, Sampson HA. J Allergy Clin Immunol. 2011 Mar;127(3):558-73

Many Different Foods Cause Anaphylaxis

Rate of Fatal Food Anaphylaxis



7

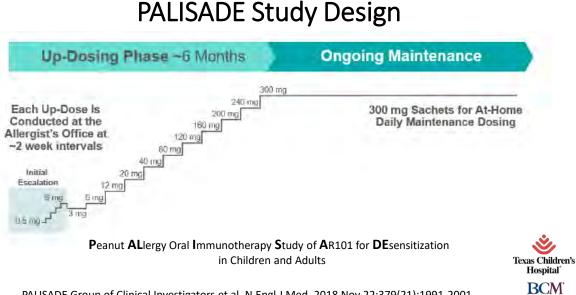
Turner et al. J Allergy Clin Immunol Pract. 2017; 5(5):1169–1178

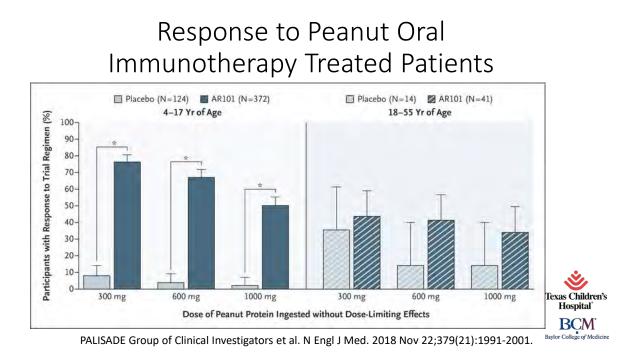
Causes of Pediatric Anaphylaxis with ICU Admission

Peanut allergy is the largest identified food trigger of mortality from anaphylaxis

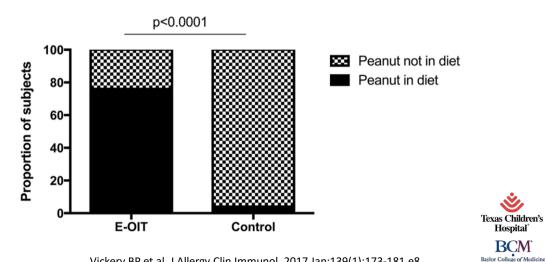
Ramsey NB, Guffey D, Coleman NE, Davis CM. Journal of Allergy and Clinical Immunology. 2018 Feb; 141(2), AB148.

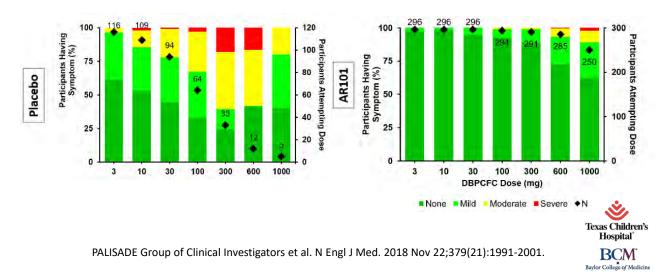
Peanut Oral Immunotherapy (OIT)


- Peanut OIT has been demonstrated to increase the threshold of reactivity to peanut protein.
- Early studies desensitized to doses up to 4000 mg¹⁻³, and recent studies use lower doses, typically 300-2000 mg as a target dose⁴⁻⁸
- Double blind placebo controlled food challenge (DBPCFC) is considered the gold standard method to determine OIT treatment effect
- In OIT, end of treatment DBPCFC top cumulative doses of peanut protein are typically < 5-10 grams

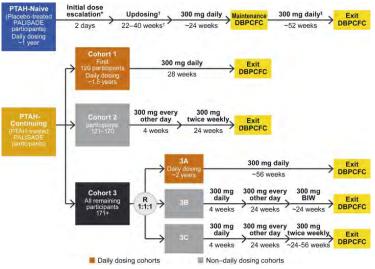

Baylor College of Medicine

Baylor College of Medi

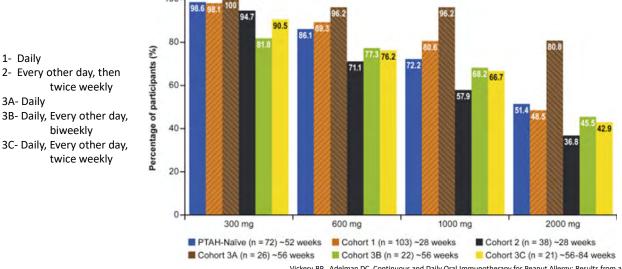

¹Jones et al. 2009, ²Varshney et al. 2011, ³Vickery et al. 2014, ⁴Syed et al. 2014 ⁵Anagnostou et al. 2014, ⁶Tang et al. 2015, ⁷Fleischer et al. 2013,⁸Narisety et al. 2015


PALISADE Group of Clinical Investigators et al. N Engl J Med. 2018 Nov 22;379(21):1991-2001.

Early Oral Immunotherapy (E-OIT) in 9 mo- 3 yr olds

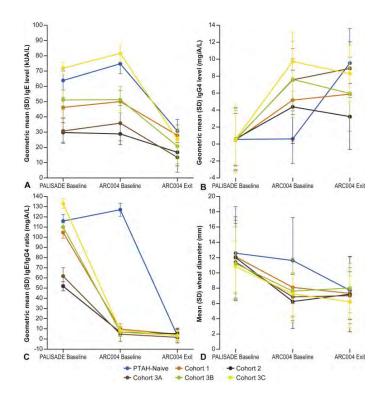


Vickery BP et al. J Allergy Clin Immunol. 2017 Jan;139(1):173-181.e8.


Maximum Symptoms at End of Study Challenge

Follow-On Study from PALISADE

Vickery BP...Adelman DC. Continuous and Daily Oral Immunotherapy for Peanut Allergy: Results from a 2-Year Open-Label Follow-On Study. J Allergy Clin Immunol Pract. 2021 May;9(5):1879-1889.e14.

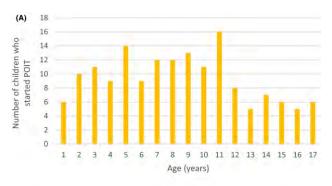

Desensitization rates based on the single highest tolerated dose at the exit DBPCFC

Vickery BP...Adelman DC. Continuous and Daily Oral Immunotherapy for Peanut Allergy: Results from a 2-Year Open-Label Follow-On Study. J Allergy Clin Immunol Pract. 2021 May;9(5):1879-1889.e14.

17

Specific IgE and IgG4 levels and SPT wheal size

Vickery BP...Adelman DC. Continuous and Daily Oral Immunotherapy for Peanut Allergy: Results from a 2-Year Open-Label Follow-On Study. J Allergy Clin Immunol Pract. 2021 May;9(5):1879-1889.e14.

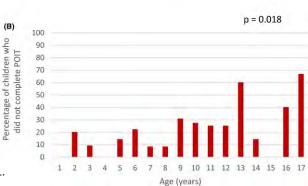

Peanut Oral Immunotherapy: "Real-World" Experience

Treatment regimen characteristics	Protocol June 1, 2016
Starting dose	2 µg
Doses to reach the day 1 target	10 doses
Day 1 target dose	2.05 mg
Daily dosing frequency during escalation	Twice a day
Post-dose observation time	45 min
Doses to complete escalation	21 after day 1
Target dose	12 peanuts (3 g protein) then pass 24- peanut challenge
Maintenance dosing frequency	Once a day

~80% reached the target dose

Wasserman RL et al. J Allergy Clin Immunol Pract. 2019 Feb;7(2):418-426.e4.

Discontinuation occurs more frequently in older children

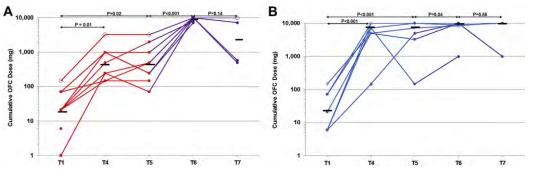

80% completed POIT (n=129/160)

Only 3% required Epinephrine during updosing

Younger age was associated with completion

Side effects of GI symptoms most common reason for stopping

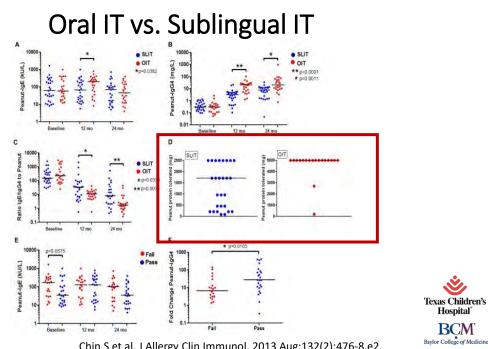
Zhu et al. Pediatric Allergy and Immunology. 2021.

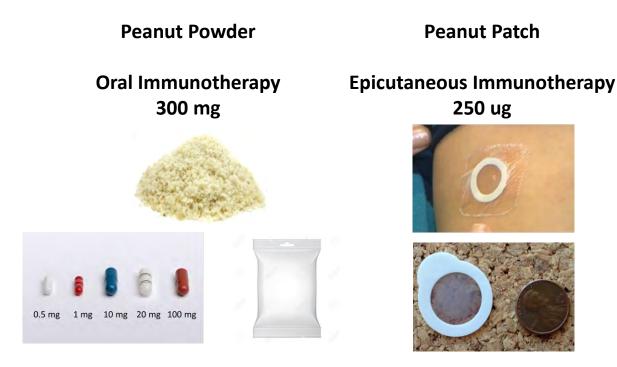

Peanut Sublingual Immunotherapy (SLIT)

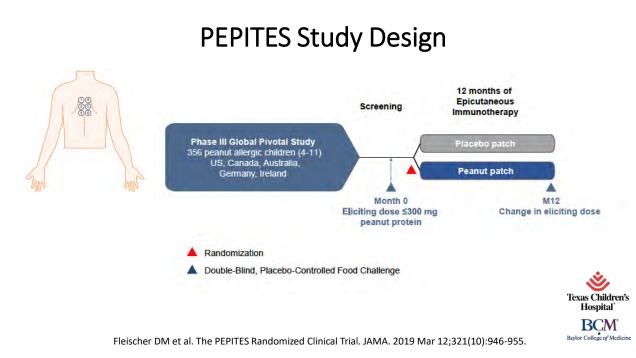
Dose No.	Weeks on IT	SLIT Dose (ug)	SLIT Increase from last dose (%)	OIT Comparison Dose (mg)	OIT Increase from last dose (%)	
1	2	0.000165		0.1		
10	4	0.165	150	12	100	
12	6	0.66	100	24	100	
14	8	3.3	100	48	100	
16	10	16.5	150	75	56	
19	13	165	150	255	50	
21	15	660	100	2000	54	<u>``</u>
23	17	1386	67			Texas Children's Hospital
24	18	3696	60			BCM Baylor College of Medicin

Narisety SD et al. J Allergy Clin Immunol. 2015 May;135(5):1275-82.e1-6.

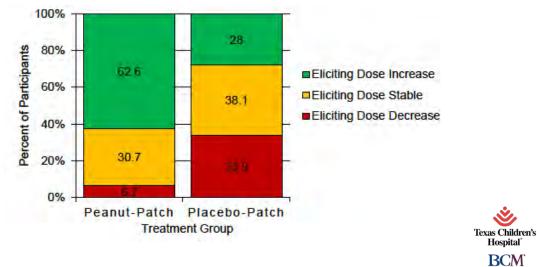
21

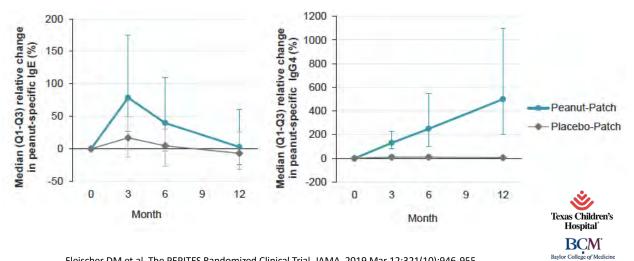

Sublingual Immunotherapy vs. Oral Immunotherapy


Change in cumulative OFC dose after SLIT (A) and OIT (B). *Red lines* indicate active SLIT, *blue lines* indicate active OIT, and *purple lines* represent combined SLIT and OIT after unblinding.



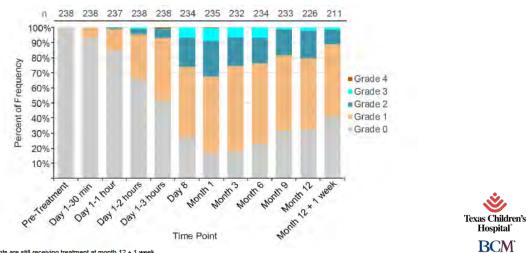
Narisety SD et al. J Allergy Clin Immunol. 2015 May;135(5):1275-82.e1-6.


Chin S et al. J Allergy Clin Immunol. 2013 Aug;132(2):476-8.e2.


25

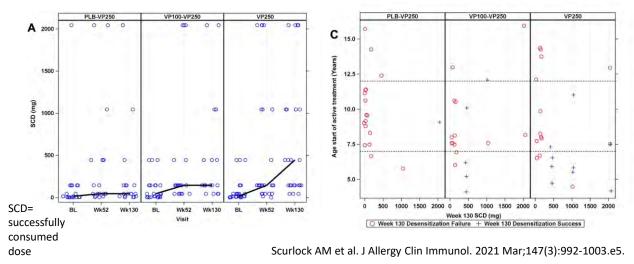
Response for Peanut Patch Treated Patients

Fleischer DM et al. The PEPITES Randomized Clinical Trial. JAMA. 2019 Mar 12;321(10):946-955.


Baylor College of Medicine

Peanut Specific IgE and IgG4

Fleischer DM et al. The PEPITES Randomized Clinical Trial. JAMA. 2019 Mar 12;321(10):946-955.

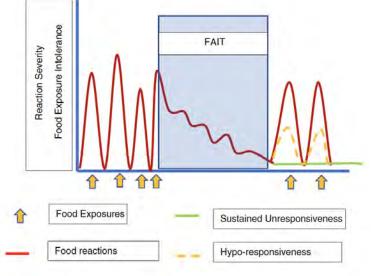

Skin Reactions with Peanut Patch Treatment

Participants are still receiving treatment at month 12 + 1 week. Reaction definitions: Grade 0: negative; Grade 1: only erythema, or erythema + infiltration; Grade 2: erythema, few papules; Grade 3: erythema, many or spreading papules; Grade 4: erythema, vesicles

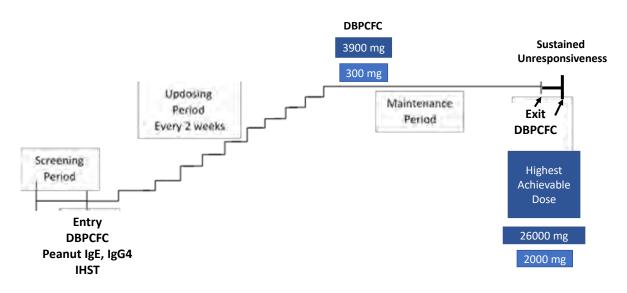
Baylor College of Medicine

Epicutaneous immunotherapy for treatment of peanut allergy: Follow-up from the Consortium for Food Allergy Research

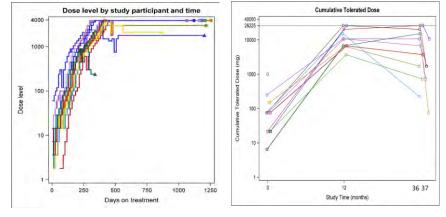
29


Phase 3 trial EPITOPE (<u>EPIT</u> in <u>TO</u>ddlers with <u>PE</u>anut Allergy) Study

- Safety and efficacy of Viaskin[™] Peanut 250 µg for the treatment of peanut-allergic toddlers ages 1 to 3
- Response was defined as
 - a subject with a baseline ED ${\leq}10$ mg who reached an ED ${\geq}300$ mg of peanut protein at month 12
 - a subject with a baseline ED >10 mg who reached an ED ≥1,000 mg of peanut protein at month 12.
- 67.0% of treated subjects responded, compared to 33.5% of subjects in the placebo arm (p<0.001)
- Safety results were generally consistent with treatment in subjects <u>></u>4 years in prior clinical trials

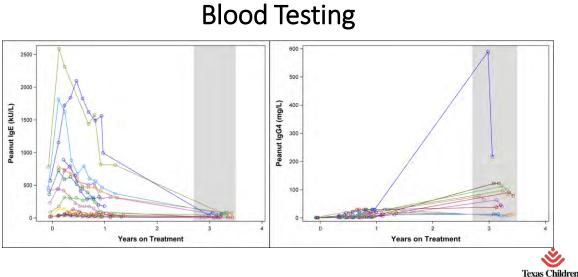

https://www.globenewswire.com/news-release/2022/06/07/2458239/0/en/DBV-Technologies-Announces-Positive-Topline-Results-from-Phase-3-EPITOPE-Trial-of-Viaskin-Peanut-in-Peanut-Allergic-Toddlers.html

Effect of Food Allergen Immunotherapy (FAIT) on Responses


Spergel et al. Curr Allergy and Asthma Reports. 2018

POIT Maximum Dose (POIMD) Food Immunotherapy Study

31


Peanut Oral Immunotherapy Maximum Dose (POIMD) Study

Baseline - 73.4 mg (1/4 peanut) 36 months- 9,407 mg (30 peanuts) 1 month avoidance – 2,783 (9 peanuts)

33

Texas Children's Hospital[®] BCM[®]

Baylor College of Medicine

Comparison and Limitations of Food IT

	Oral Immunotherapy	Sublingual Immunotherapy	Epicutaneous Immunotherapy	
Route of Administration	Oral (mouth)	Under the tongue	On the skin	
Foods Evaluated	Cow's milk, hen's egg, peanut, tree nuts, fruits, vegetables	Cow's milk, peanut, hazelnut, kiwi	Cow's milk, peanut	
Daily Doses (Food Protein)	300–4000 mg	2–7 mg	250 µg	
Efficacy *	Large	Small-to-Moderate	Small, but variable	
Side Effects	Common: local (oral or gastrointestinal including EoE)	Common: local (oral or pharyngeal)	Common: local (skin)	
	Less common: systemic (3-4%)	Rare: systemic	Not yet reported: systemic	

*Refers to desensitization effect, not sustained unresponsiveness (SU).

Sara Anvari, Aikaterini. Anagnostou. Children. 2018 Apr 4;5(4).

Limitations of Food Allergen IT

- Side effects are common, with GI symptoms being frequent
- Discontinuation occurs in older children compared to younger
- Hyporesponsiveness is achieved, but sustained unresponsiveness has been elusive
- Daily dosing is necessary to maintain response

Promise for the Future of Immunotherapy

- OIT with probiotics, herbal formulations and other adjuvants
- Omalizumab and dupilumab as monotherapies or in combination with allergen-specific therapies to improving safety and achieve SU
- OIT for non-peanut, egg and milk allergens and multiple foods
- Identification of best candidates for food allergen IT

TCH Food Allergy Program Team: Carla M. Davis, MD Sara Anvari, MD Katherine Anagnostou, MD, PhD Meera Gupta, MD Chivon McMullen-Jackson, RN Daisy Tran, RN Deiny Delacerda, RN Christina Cowperthwait Theresa Aldape, LCSW Kathy Pitts, NP Melissa Hearrell, NP Anthony Olive, MD Eric Chiou, MD Fabian Rivera Andrea Amarante Supriya Parikh Nelly Hernandez Amanda Vega Brenda Bin Su, PhD Harold Ames, MS Warren Blackmon

TCH Center for Human Immunobiology Texas Children's Clinical Research Center Food Allergy Patients and Families Donors of TCH Food Allergy Program

Funding and Community Support

Presentations for Saturday, June 25, 2022

Operationalizing an Allergy Framework for COVID-19 Vaccinations

Paige Wickner, MD, MPH

PAERF 2021 Grant Presentation

Investigating epidemiologic and immunologic relationships between systemic and gastrointestinal food allergies Stan Gabryszewski, MD, PhD

Recognizing Health Disparities in Food Allergy

Carla Davis, MD

AERD - Diagnosis and Treatment

Tanya Laidlaw, MD

Quality/Safety in the Allergy Practice

Paige Wickner, MD, MPH

Disparities in Asthma

Torie Grant, MD, MHS

WORKSHOP: Aspirin and NSAID Challenges

Tanya Laidlaw, MD

Pennsylvania Allergy & Asthma Association

PENNSYLVANIA ALLERGY & ASTHMA ASSOCIATION

73RD PAAA ANNUAL MEETING

Operationalizing an Allergy Framework for COVID-19 Vaccinations

Presented by: Paige Wickner, MD, MPH

Saturday, June 25, 2022 8:00 a.m. – 8:45 a.m.

PAAA does not have permission to share slides.

Pennsylvania Allergy & Asthma Association

PENNSYLVANIA ALLERGY & ASTHMA ASSOCIATION

PAERF 2021 Grant Presentation

Investigating epidemiologic and immunologic relationships between systemic and gastrointestinal food allergies

Presented by: Stanislaw Gabryszewski, MD, PhD

Saturday, June 25, 2022 8:45 a.m. - 8:55 p.m.

Determination of National and Regional Patterns of Pediatric Allergy Using Electronic Health Record Data

Stanislaw J. Gabryszewski, MD, PhD^a, Jesse Dudley, MS^b, Di Shu, PhD^{c,d}, Robert W. Grundmeier, MD^b, Alexander G. Fiks, MD, MSCE^b, David A. Hill, MD, PhD^{a,e}

Affiliations: ^aDivision of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA; ^bCenter for Pediatric Clinical Effectiveness, Department of Biomedical and Health Informatics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA; ^cDepartment of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; ^dCenter for Pediatric Clinical Effectiveness, Department of Pediatrics, Children's Hospital of Philadelphia, PA; ^eCenter for Pediatric Clinical Effectiveness, Department of Pediatrics, Children's Hospital of Philadelphia, PA; ^eCenter for Pediatric Clinical Effectiveness, Department of Pediatrics, Children's Hospital of Philadelphia, PA; ^eInstitute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; ^eInstitute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; ^eInstitute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; ^eInstitute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA

Rationale: Analyses of electronic health record (EHR)-based clinical cohorts overcome limitations of survey-based methodologies, such as reporting bias. To date, EHR-based analyses have not been applied to the study of national allergic disease patterns.

Methods: We defined a cohort of 219,397 children aged 0-18 years using the United States (US) multistate Comparative Effectiveness Research Through Collaborative Electronic Reporting (CER2) EHR database, which spans 27 states. Diagnosis codes and medication prescriptions were used to identify subjects with atopic dermatitis (AD), IgE-mediated food allergy (IgE-FA), asthma, allergic rhinitis (AR), and eosinophilic esophagitis (EoE). We determined cumulative incidence and peak age of incidence, regional variations in cumulative incidence, and the most common food allergens for IgE-FA.

Results: The cumulative incidence (and peak age of incidence) for allergic manifestations were 10.2% (0.3 years) for AD, 4.0% (1.1 years) for IgE-FA, 20.0% (1.1 years) for asthma, 19.7% (2.1 years) for AR, and 0.11% (2.9 years) for EoE. Cumulative incidences varied by geographical region. 13.3% of children had 2 or more allergic conditions, and respiratory allergies (asthma, AR) shared marked comorbidity with each other and with other manifestations. The most common documented food allergens overall were peanut (1.9%), egg (0.8%), and shellfish (0.6%).

Conclusion: Our EHR-based analysis of a multi-state cohort expands on previous regional analyses to detail US pediatric allergy rates on a national scale. Incidence patterns support the classical allergic march sequence and the variable natural histories of food allergies. We detected notably lower rates of IgE-FA and milk allergy as compared with prior studies. The ability to accurate describe trends in pediatric allergic disease patterns is important from the perspectives of clinical medicine, public health, and scientific inquiry.

PENNSYLVANIA ALLERGY & ASTHMA ASSOCIATION

73RD PAAA ANNUAL MEETING

Recognizing Health Disparities in Food Allergy

Presented by: Carla Davis, MD

Saturday, June 25, 2022 9:00 a.m. – 9:45 a.m.

Recognizing Health Disparities in Food Allergy

Pennsylvania Allergy and Asthma Association

1

Carla M. Davis, MD Professor of Pediatrics Chief, Immunology, Allergy, and Retrovirology Section Director, Food Allergy Program Texas Children's Hospital Baylor College of Medicine June 25, 2022

Disclosures

- In relation to this presentation, I declare the following, real or perceived conflicts of interest:
 - Research Grants: National Institute of Allergy and Infectious Disease, DBV Technologies, Aimmune Therapeutics, Food Allergy Research and Education, Allergenis, Regeneron Pharmaceuticals, Pfizer, The Scurlock Foundation
 - Consultant/Advisory Board: Moonlight Therapeutics

Objectives

- Describe current evidence regarding health disparities within food allergy in racial and ethnic underserved populations
- Know what interventions to mitigate disparities that can be implemented
- Share what you can do in the future to address disparities in food allergy

Outline

Definition of Health Disparity and Health Equity Disparities in Food Allergy Prevalence Disparities in Food Allergy Management Disparities in Food Allergy Reaction Preparedness Disparities in Food Allergy Eczema and Asthma Socioeconomic Variables Impacting Clinical Outcomes What You Can Do

Hospital^{*} BCM^{*} Baylor College of Medicine

March 2001

INSTITUTE OF MEDICINE

Shaping the Future for Health

CROSSING THE QUALITY CHASM: A NEW HEALTH SYSTEM FOR THE 21ST CENTURY

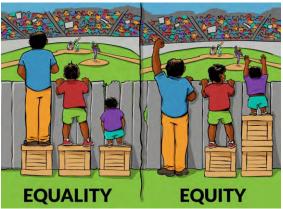
The U.S. health care delivery system does not provide consistent, highquality medical care to all people. Americans should be able to count on receiving care that meets their needs and is based on the best scientific knowledge--yet there is strong evidence that this frequently is not the case. Health care harms patients too frequently and routinely fails to deliver its potential benefits. Indeed, between the health care that we now have and the health care that we could have lies not just a gap, but a chasm.

Texas Children's Hospital^{*} BCM^{*} Baylor College of Medicine

AAAAI Work Group Report

American Academy of Allergy Asthma & Immunology

Health disparities in allergic and immunologic conditions in racial and ethnic underserved populations: A Work Group Report of the AAAAI Committee on the Underserved


Check for updates

Carla M. Davis, MD, FAAAAI,^{a,b} Andrea J. Apter, MD, MA, MSc, FAAAAI,^c Adrian Casillas, MD, FAAAAI,^d Michael B. Foggs, MD, FAAAAI,^e Margee Louisias, MD,^f Elsie C. Morris, MD,^g Anil Nanda, MD, FAAAAI,^{b,i,j} Michael R. Nelson, MD, PhD, FAAAAI,^k Princess U. Ogbogu, MD, FAAAAI,^l Cheryl Lynn Walker-McGill, MD, MBA, FAAAAI,^{m,n} Julie Wang, MD, FAAAAI,^o and Tamara T. Perry, MD^{p,q} Houston, El Paso, Lewisville, Flower Mound, and Dallas, Tex; Philadelphia, Pa; Chicago, Ill; Boston, Mass; Tucker, Ga; Bethesda, Md; Cleveland Ohio; Charlotte, NC; New York, NY; and Little Rock, Ark

Davis CM et al. J Allergy Clin Immunol. 2021 May;147(5):1579-1593.

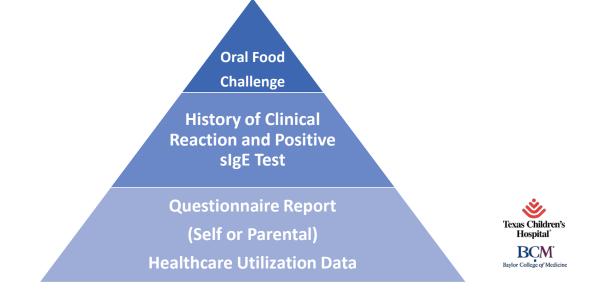
What are Healthcare Disparities?

- Health disparity: Health difference linked with economic, social and environmental disadvantage
 - Adversely affects groups that have systematically experienced greater social or economic obstacles to health based on their race, ethnicity, religion, SES status, gender, age, disability, sexual orientation, and/or geographic location
- Health Equity: Principle underlying the commitment to reduce disparity and its determinants

[&]quot;Interaction Institute for Social Change | Artist: Angus Maguire."

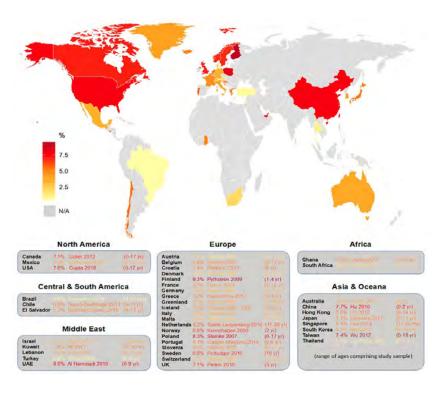
Braveman, What Are Health Disparities and Health Equity? We Need to Be Clear, Public Health Rep 2014

Social Determinants of Health



Davis et al. JACI. 2021.

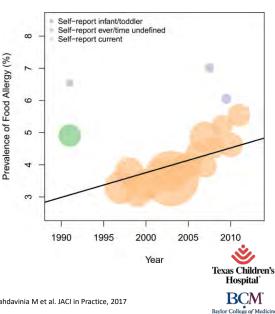
Disparities in Food Allergy Prevalence



Prevalence is Influenced by the Criteria Used for the Definition of Food Allergy

Data suggest increasing prevalence, with rates up to 8-10% depending on age, geography, and criteria used for definition

Warren CM, Jiang J, Gupta RS. Curr Allergy Asthma Rep. 2020 Feb 14;20(2):6. doi: 10.1007/s11882-020-0898-7.



Disparities in Prevalence of Food Allergy

Self-report of food allergy among US children has sharply increased in the past 2 decades with the greatest increase among non-Hispanic black children

Retrospective cohort study of children compared with non-Hispanic white children:

- African American children had
 - more asthma and eczema (P < .01)
 - significantly higher odds of allergy to wheat, soy, corn, fish, and shellfish (P < .01)
- Hispanic children had
 - significantly higher odds of allergy to corn, fish, and shellfish (P < .01)
 - Hispanic children higher odds of eczema (P < .01)

Keet CA et al. Ann Allergy Asthma Immunol. 2014 Mar;112(3):222-229.e3.; Mahdavinia M et al. JACI in Practice, 2017

Self-report of current food allergy by ethnicity increased from 1991 to 2011

White		Black		Hispanic		С		
Survey Administration NHANES III (1989-64) NHIS (1997) NHIS (1998) NHIS (2001) NHIS (2003) NHIS (2003) NHIS (2003) NHIS (2004) NHIS (2004) NHIS (2005) NHIS (2005) NHIS (2007)	++++++++++++++++++++++++++++++++++++++	ES (95% C1) 7.07 (6.67, 8.78) 3.45 (3.03, 3.88) 4.33 (3.82, 4.84) 3.56 (3.04, 4.86) 3.56 (3.04, 4.86) 3.56 (3.25, 4.27) 3.54 (3.24, 4.45) 3.74 (3.25, 4.27) 4.57 (4.45) 4.58 (Burvey Administration NH4465 III (1989-1994) NH51 (1997) NH51 (1997) NH51 (1996) NH51 (2002) NH51 (2002) NH51 (2002) NH51 (2003) NH51 (2005) IFF51 (2006) NH51 (2007) NH51 (200		ES (95% C) 4.94 (1.79, 6.19) 3.06 (2.27, 4.01) 3.06 (2.27, 4.01) 3.04 (2.17, 8.89) 2.71 (1.88, 3.56) 2.71 (1.88, 3.56) 3.51 (2.52, 4.69) 3.51 (2.52, 4.69) 3.51 (2.54, 4.69) 3.51 (2.54, 4.69) 3.51 (2.54, 4.69) 3.51 (2.54, 4.69) 3.51 (2.54, 4.69) 3.51 (2.54, 4.69) 3.51 (2.57, 4.60) 3.51 (2.57, 4.70) 3.51 (2.57, 4.50) 3.52 (2.57, 10.50) 3.51 (2.57, 10.50	Survey Administration NHANES III (1991-44) NHIS (1997) NHIS (2000) NHIS (2001) NHIS (2001) NHIS (2001) NHIS (2001) NHIS (2001) NHIS (2005) IF/FI (1006) NHIS (2005) IF/FI (2006) NHIS (2007) NHIS (2007) NHIS (2006) NHIS (2007) NHIS (2006)	++++++++++++++++++++++++++++++++++++++	E5 (95% C1) 4.86 (3.22, 7.29) 2.34 (1.82, 2.80) 1.48 (1.34, 2.26) 2.13 (1.34, 2.26) 2.22 (1.68, 2.76) 3.02 (2.19, 3.86) 2.22 (1.68, 2.76) 3.07 (2.55, 3.71) 3.07 (2.55, 3.71)
NHIS (2011) I-squared = 95.9%, p < 0.001	2% 4% 5% 8%	5.86 (5.16, 6.56) 10%	NHIS (2010) NHIS (2011) I-squared = 95.8%, p < 0.00		6.38 (4.81, 7.95) 6.18 (4.83, 7.49) % 10%	NHIS (2010) NHIS (2011) 1-squared = 93,5%, p < 0.001	2% 4% 6% 8%	2.89 (2.21, 3.53) 4.04 (3.21, 4.87) 10%

1.0 % increase

2.1 % increase

1.2 % increase

Keet CA et al. Ann Allergy Asthma Immunol. 2014 Mar;112(3):222-229.e3

Variable	Prevalence of Current FA, % (95% CI)	P Value	Prevalence of Adult- Onset Current FA, % (95% CI)	P Value
Overall	10.8 (10.4-11.1)	NA	5.2 (4.9-5.4)	NA
Race/ethnicity				
Asian, non-Hispanic	11.4 (9.8-13.3)		4.8 (3.8-6.1)	
Black, non-Hispanic	11.2 (10.2-12.3)		5.1 (4.4-5.9)	
White, non-Hispanic	10.1 (9.7-10.6)	<.001	5.2 (4.9-5.5)	<.001
Hispanic	11.6 (10.5-12.8)		4.6 (3.9-5.4)	
Multiple or other	15.9 (13.6-18.6)		7.2 (5.8-9.0)	
Sex				
Male	7.5 (7.0-7.9)	- 001	3.0 (2.7-3.3)	. 001
Female	13.8 (13.3-14.4)	<.001	7.2 (6.8-7.7)	<.001

Gupta RS, Warren CM, Smith BM, Jiang J, Blumenstock JA, Davis MM, et al. JAMA Netw Open 2019; 2:e185630.

15

Caregiver reported FA significantly lower among children in household incomes <\$50 000 vs ≥\$50 000

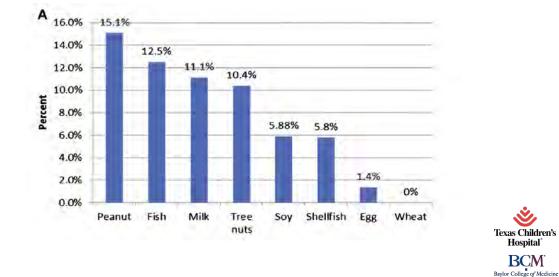
TABLE 4	Multiple Logistic Regression Models: Adjusted Odds of Food Allergy, Diagnosis of Food
	Allergy, and Severe Food Allergy

Variable	Food Allergy vs No Food Allergy	Confirmed vs Convincing Food Allergy	Severe vs Mild-to-Moderai Food Allergy	te
Race/ethnicity vs white, non-Hispanic				
Asian, non-Hispanic	1.4 (1.2-1.7)	0.7 (0.4-0.9)	0.7 (0.4-1.0)	
Black, non-Hispanic	1.8 (1.6-2.1)	0.8 (0.6-1.0)	1.1 (0.8-1.4)	
Hispanic	0.9 (0.8-1.1)	0.8 (0.6-1.0)	0.9 (0.7-1.2)	
Multiple/other, non-Hispanic	1.1 (0.9-1.4)	1.2 (0.8-1.8)	1.1 (0.7-1.7)	
Gender				
Male vs female	0.9 (0.9-1.1)	1.1 (0.9-1.3)	1.3 (1.0-1.5)	
Age vs 0–2 y				
3-5	1.5 (1.3-1.8)	1.4 (1.0-1.9)	1.6 (1.1-2.4)	
6-10	1.2 (1.1-1.4)	1.2 (0.9-1.)	1.6 (1.2-2.3)	
11-13	1.3 (1.1-1.5)	1.1 (0.8-1.6)	1.9 (1.4-2.8)	
14-17	1.4 (1.2-1.6)	1.2 (0.9-1.7)	2.1 (1.5-3.0)	1.00
Household income, \$	1. M. C. M. C.			
<50 000 vs ≥50 000	0.5 (0.4-0.7)	0.5 (0.4-0.6)	0.8 (0.6-0.9)	1
Geographic region vs Midwest	1.1.1.1.1.1.1.1.1		and the second second	
Northeast	1.3 (1.2-1.5)	1.3 (1.0-1.7)	1.1 (0.9-1.5)	
South	1.5 (1.3-1.7)	1.1 (0.9-1.4)	1.1 (0.8-1.4)	
West	1.3 (1.1-1.5)	1.0 (0.7-1.3)	1.0 (0.7-1.3)	
Report of multiple food allergies				Texas Children
Yes vs no	-	3.1 (2.6-3.8)	3.2 (2.7-4.0)	Hospital [*]

h estimate is adjusted for all variables listed in the table.

Gupta RS et al. Pediatrics. 2011 Jul;128(1):e9-17.

Exploring racial differences in IgE-mediated food allergy in the WHEALS birth cohort Christine L.M. Joseph, PhD⁻¹; Edward M. Zoratti, MD^{1,1}; Dennis R. Ownby, MD^{1,5}; Suzanne Havstad, MA⁻¹; Charlotte Nicholas, MPH¹; Christian Nageotte, MD^{1,1}; Rana Misiak, MD^{1,1}; Robert Enberg, MD¹; Jerel Ezell, MPH¹; Christine Cole Johnson, PhD⁻¹ [•]Departmer of Public Hedik Sciences, Hany Ford Hospital Derick, McKigan ¹Conter (or Allergy, Asthman and Immunology, Department of Internal Medicine, Henry Ford Hospital, Derick, McKigan ¹Division of Allergy and Immunology, Department of Internal Medicine, Georgia Regents University, Augusta, Georgia


- Wayne County Health, Environment, Allergy, and Asthma Longitudinal Study (590 infants)
- Sensitization (serum specific IgE >0.35 IU/mL) to the food allergens was significantly higher for African American children compared with non-African American children
- A higher proportion of African American children were designated as having peanut allergy
 - % African American children with sIgE level >95% predictive decision points for peanut was 1.7% vs 0.5% for non-African American children.
- After logistic regression, race/ethnicity was associated with sensitization to >1 of the food allergens (aOR, 1.80; 95% CI, 1.22-2.65; P = .003).

The prevalence and characteristics of food allergy in urban minority children Sarah Taylor-Black, MD; and Julie Wang, MD The Elliot and Roslyn Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Mount Sinai School of Medicine, New York, New York

Ann Allergy Asthma Immunol 109 (2012) 431–437

- A retrospective review of EMR from children seen in the hospitalbased general pediatric clinic at Mount Sinai Hospital serving East Harlem, NY, between July 1, 2008 and July 1, 2010
- Of 9,184 children seen in this low-income, minority clinic, 3.4% (313) had a physician-documented food allergy
- Significantly more black children (4.7%) were affected than children of other races (2.7%, P < .0001)

Taylor-Black S, Wang J. The prevalence and characteristics of food allergy in urban minority children. Ann Allergy Asthma Immunol. 2012 Dec;109(6):431-7.

19

Higher prevalence of food allergy in Black and Hispanic NYC school children

	Private schools (n = 495 students)	Public charter schools $(n = 437 \text{ students})$	P value
Response rate, n (%)	263 (60)	135 (27)	<.0001
Age (y), median (range)	8 (4-12)	6 (6-10)	<.001
Girls, n (%)	126 (48)	65 (48)	.8
Race, n (%)			
White	196 (74.5)	8 (5.9)	<.0001
Black	12 (4.6)	67 (49.6)	<.0001
Asian	19 (7.2)	0(0)	.0006
Hispanic	18 (6.8)	74 (54.8)	.0001
Median annual income (US\$)	>150,000	25,000-49,000	<.0001
Has a doctor ever told you that your child has a food allergy? n (%)			
Yes	46 (17.5)	11 (7.4)	.006
Unsure	5 (1.9)	5 (4,4)	.19
Parental report of food allergy by food, n (%)			
Egg	3(1.1)	2 (1.5)	1
Milk	3 (1.1)	1 (0.7)	1
Peanut	15 (5.7)	5 (3.7)	.5
Tree nuts	16 (6.1)	1 (0.7)	.02

Taylor-Black SA, Mehta H, Weiderpass E, Boffetta P, Sicherer SH, Wang J. Ann Allergy Asthma Immunol. 2014 Jun;112(6):554-556.e1.

FORWARD (<u>F</u>ood allergy <u>O</u>utcomes <u>R</u>elated to <u>W</u>hite and <u>A</u>frican-American <u>R</u>acial <u>D</u>ifferences)

- Objective was to compare clinical and psychosocial outcomes, phenotypes and endotypes, and management practices among a large, socioeconomically and geographically diverse sample of food allergic African American and White children.
- African Americans had higher adjusted odds of allergy to finfish (OR: 2.54, P < .01) and shellfish (OR: 3.10, P < .001) than Whites.
- African Americans also had higher adjusted odds of asthma than Whites (asthma prevalence of 60.5% in African Americans and 27.2% in Whites; OR: 2.70, P < .001).
- In addition, shellfish allergy was associated with asthma, after controlling for race.

Mahdavinia M...Gupta RS. J Allergy Clin Immunol Pract. 2021 Jul;9(7):2867-2873.e1. Davis CM. J Allergy Clin Immunol Pract. 2021 Jul;9(7):2874-2875.

Disparities in Food Allergy Management

FA Physician Documentation, Testing, and Anticipatory Guidance is Lower in Minority Patients

- In low income, urban minority patients with a physician-documented food allergy, fewer than half had confirmatory testing or evaluation by an allergy specialist.
- Although most had epinephrine autoinjectors prescribed, most were not given food allergy action plans.
 - Significantly more blacks were affected than children of other races.
- Black and Hispanics have higher rates of FA-related anaphylaxis and emergency department visits (P < .01).

Taylor-Black S et al. Ann Allergy Asthma Immunol. 2012;109(6):431-7 Bilaver LA et al. Pediatrics. 2016;137(5) Mahdavinia M et al. JACI in Practice, 2017;5(2):352-357.e1.

23

Food Allergy Diagnosis and Follow Up

- Formal food allergy diagnosis is lower among black children despite higher sensitization rates and higher odds of reported severe reactions due to food allergy
- Black and Hispanic children have a shorter duration of followup for FA with an allergy specialist (~ 2 years vs. 3 years in White children)

Greenhawt, et al. J Allergy Clin Immunol: In Practice. 2013;1:378-86 Mahdavinia M et al. J Allergy Clin Immunol: In Practice. 2017 Gupta et al. Pediatrics. 2011;128:e9-e17

Texas Children's Hospital BCM

Baylor College of Medicine

e status	Insurance group	No Medicaid	Medicaid
ated	Percent of cases with anaphylaxis to foods	21.4	32.4
eased	Odds ratios (95% CI)*	ref	1.17 (0.80-1.70) P = .423
of	Percent of cases with ED visit for food allergy	23.1	38.0
low up	Odds ratios (95% CI)	ref	1.33 (0.92-1.92) P = .128
	Age in years at first allergist visit (mean \pm standard deviation)	4.35 ± 3.70	4.66 ± 3.73
	Regression coefficients (95% CI)†	ref	$0.17 \ (-0.13 \text{ to } 0.46)$ P = .263
	Duration of follow-up (y) (mean \pm standard deviation)	3.20 ± 2.12	2.32 ± 2.38
	Regression coefficients (95% CI)	ref	-0.54 (-0.90 to -0.19) P = .002

TABLE F2 Impact of insurance status on food allerov-related

Mahdavinia M et al. J Allergy Clin Immunol Pract. 2017;5(2):352-357.e1.

Disparities in Food Allergy Parental Knowledge

- Black, Hispanic, and Asian parents were:
 - Less likely to correctly identify signs of a FA reaction
 - Less likely to identify triggers
 - · More likely to recognize the need to avoid food allergens

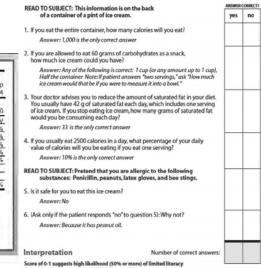
Characteristic	Able to identify 2 signs of a milk allergy reaction	Able to identify 3 triggers of food allergy	Recognize necessity of allergenic food avoidance	Aware that daily medicine cannot treat food allergy
Aged ≥65 y	0.81 (0.69-0.96)b	0.72 (0.52-0.99) ^b	1.28 (1.14-1.43) ^b	1.16 (0.95-1.42)
Female sex Race	1.26 (1.14-1.39)	1.02 (0.86-1.22)	1.07 (0.99-1.16)	1.14 (1.00-1.31)
Black	0.83 (0.73-0.95) ^b	0.64 (0.48-0.84) ^b	1.13 (1.02-1.25) ^b	1.02 (0.85-1.22)
Hispanic	0.80 (0.71-0.91)	0.68 (0.53-0.89)b	1.15 (1.04-1.26)b	1.01 (0.85-1.21)
Asian	0.84 (0.72-0.97) ^b	0.97 (0.76-1.25)	1.06 (0.94-1.20)	1.04 (0.86-1.26)
College graduate	0.96 (0.86-1.07)	1.05 (0.86-1.28)	0.99 (0.90-1.09)	1.23 (1.06-1.42) ^b
Annual income <\$75,000	1.03 (0.94-1.12)	0.86 (0.72-1.02)	1.09 (1.00-1.18)	0.92 (0.81-1.05)
Parent of child <18 y	1.03 (0.94-1.13)	1.01 (0.85-1.21)	1.11 (1.02-1.20)b	1.07 (0.93-1.23)
Prior training in food allergy	1.12 (1.00-1.25) ^b	1.42 (1.15-1.74) ^b	1.04 (0.93-1.15)	1.11 (0.94-1.31)
Food-allergic acquaintance	1.22 (1.11-1.35)b	1.03 (0.86-1.30)	0.93 (0.86-1.01)	1.03 (0.90-1.18)

* Data are given as relative risk ratio (95% confidence interval).

P < .05.</p>

Gupta et al. Ann Allergy Asthma Immunol. 2009;103:43-50

exas Children's Hospital


BCM

Health Literacy and Food Allergy Management Knowledge

- Health literacy was assessed using the Newest Vital Sign (NVS), a validated index consisting of 6 questions regarding an individual's ability to read an ice cream label
- Higher scores = better health literacy

Nutrition Facts Serving Size Servings per container		Vé cup
Amount per serving		
Calories 250	Fat Cal	120
		%DV
Total Fat 13g		20%
Sat Fat 9g		40%
Cholesterol 28mg		12%
Sodium 55mg		2%
Total Carbohydrate 30g	1	12%
Dietary Fiber 2g		-
Sugars 23g		-
Protein 4g		8%
"Percentage: Daily Velues (DV) 2.000 calorie tiet, Your daily vi be higher or lower dispending o catoria nearts: Ingrodients: Crown, Skim Singar, Wales, Epg Yolks, Brow Milhat: Peenal QJ, Sugar, Bui Carraceeran, Vanille Emmot	alluna may in your Milli, Liquid in Sugar,	

Score Sheet for the Newest Vital Sign Questions and Answers

Score of 0-1 suggests high likelihood (50% or more) of limited literacy Score of 2-3 indicates the possibility of limited literacy. Score of 4-6 almost always indicates adequate literacy.

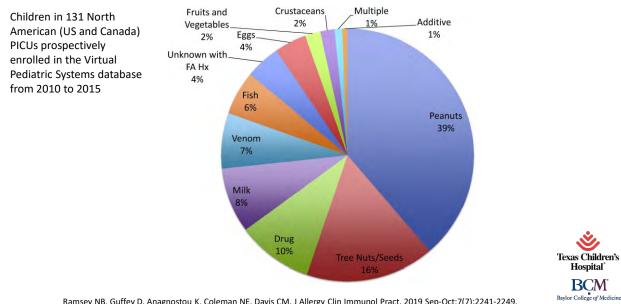
Egan M, Yin HS, Greenhawt M, Wang J. J Allergy Clin Immunol Pract. 2019 Feb;7(2):655-658.

27

Lower health literacy in caregivers is associated with deficiencies in management

Outcome assessed	Health literacy association
Demonstrated correct use of EA (caregiver), mean \pm SD	- Every 1-point increase in the EA score was associated with a 0.3 increase in the NVS score ($P = .002$)
Unexpired EA present at visit*	 Device being present was associated with a 1.5-point increase in the NVS score (P = .001)
Food allergy reaction rates (no. of events in the past 12 mo), mean \pm SD	- The NVS score decreased by 0.46 for every additional allergic reaction (P = .002)
History of anaphylaxis	 Those with a higher NVS score were less likely to have a history of anaphylaxis (OR, 0.76; 95% CI, 0.61-0.94)
Health care utilization (no. of events in the past 12 mo), median (IQR)	 No association with calls to pediatrician No association with ED visits For every additional allergy call, the NVS score increased by 0.46 (P = .002)
Clinical vignette: Treatment of mild hives† (participants able to select multiple answers)	 The mean NVS score was lower among patients reporting taking child to the ED (P = .003) or calling 911 for hives (P = .008)
Clinical vignette: Treatment of anaphylaxis‡ (participants able to select multiple answers)	- The NVS score was lower in patients who would take child to the ED for anaphylaxis ($P = .05$)

- 1) Demonstrating correct use of an epinephrine autoinjector
- 2) Increased reactions to foods in the past 12 months
- 3) Knowledge gaps on treatment of allergic reactions.



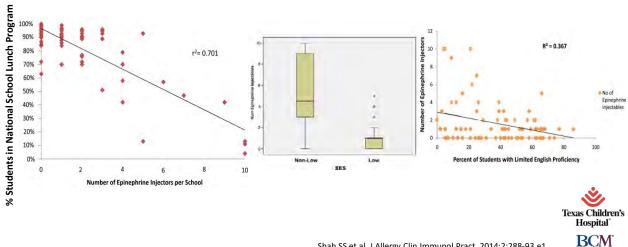
Egan M, Yin HS, Greenhawt M, Wang J. J Allergy Clin Immunol Pract. 2019 Feb;7(2):655-658.

Disparities in Food Allergy Reaction Preparedness

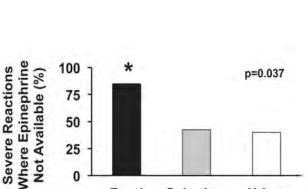
Food-Induced PICU Anaphylaxis

Ramsey NB, Guffey D, Anagnostou K, Coleman NE, Davis CM. J Allergy Clin Immunol Pract. 2019 Sep-Oct;7(7):2241-2249.

Population Specific Triggers


- There were differences among children with different race/ethnicities (P < .001)
 - In Black children, fish (60%) and shellfish (67%) were the most common triggers
 - In White children, tree nuts (59%) and milk (64%)
 - In Asian children, eggs (10%) and tree nuts/seeds (9%)
 - In Hispanic children, crustaceans (22%), eggs (20%), and fish (20%).
- There were also significant differences among children in different US regions (P = .044).
 - In Midwestern children, milk (46%) or shellfish (45%) were the most common triggers
 - In Northeastern children, eggs (25%) and milk (22%)
 - In Southern children, shellfish (45%)
 - In Western children, tree nuts/seeds (30%) or peanuts (31%).

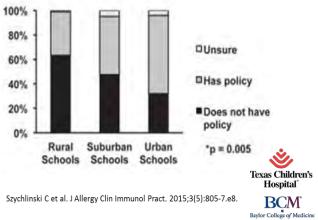
31


Disparities in Emergency Preparedness

• Epinephrine has shown to be less available in schools when needed in low income, low English proficiency and rural populations.

Shah SS et al. J Allergy Clin Immunol Pract. 2014;2:288-93.e1.

Baylor College of Medicine

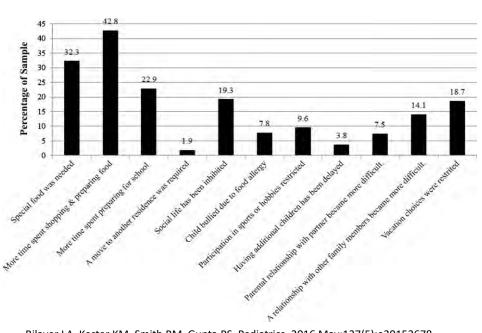

Suburban

Urban

Rural

Rural communities reported less epinephrine availability than urban and suburban communities

Nurses from rural schools were least likely to report a policy for undesignated epinephrine


Socioeconomic Variables Impacting Food Allergy

Socioeconomic Disparities in the Economic Impact of Childhood Food Allergy

Lucy A. Bilaver, PhD,^a Kristen M. Kester, MD, MPH,^b Bridget M. Smith, PhD,^{c,d,e} Ruchi S. Gupta, MD, MPH^{c,d}

- Cross-sectional survey data (November 2011 and January 2012) from 1,643 US caregivers with a food-allergic child.
- 2-part regression model to estimate mean costs and identified differences by levels of household income and race or ethnicity.
- Children in the lowest income stratum incurred 2.5 times the amount of emergency department and hospitalization costs as a result of their food allergy than higher-income children.
- Costs incurred for specialist visits were lower in the lowest income group (\$228) compared with the highest income group (\$311; P < .01) as was spending on out-of-pocket medication costs (\$117, lowest income; \$366, highest income; P < .001).
- Conclusion: Affordable access to specialty care, medications, and allergen-free foods are critical to keep all food-allergic children safe, regardless of income and race.

Bilaver LA, Kester KM, Smith BM, Gupta RS. Pediatrics. 2016 May;137(5):e20153678.

Bilaver LA, Kester KM, Smith BM, Gupta RS. Pediatrics. 2016 May;137(5):e20153678.

Food allergy-related bullying and associated peer dynamics among Black and White children

- FORWARD prospective multicenter cohort study, initiated to evaluate racial differences in the natural history of food allergy among Black and White children.
- No significant racial differences in FA-related bullying prevalence were identified overall (20.0% of White vs 15.6% of Black; *P* = .50)
- In those ≥11 years old, the rates were higher among White (44.8% vs 18.2% of Black), *P* = .046
- In contrast, bullying unrelated to FA was higher among Black (38.6%), vs. White children (17.7%), *P* = .002

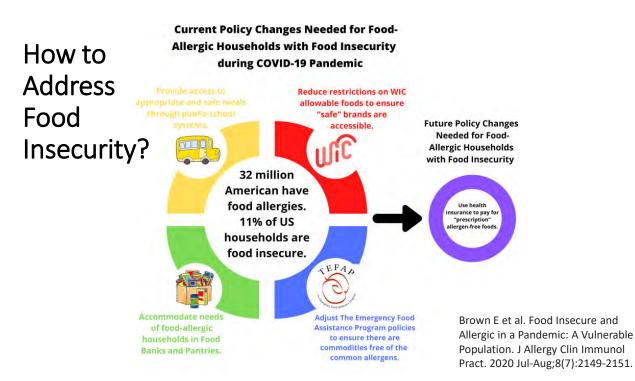
Brown D...Warren C. Ann Allergy Asthma Immunol. 2021 Mar;126(3):255-263.e1.

Variable : Comparison		OR (95% CI)	P
Food allergy : milk and egg vs no FA	· · · · · · · · · · · · · · · · · · ·	2.50 (1.36, 4.61)	0.003
Food allergy : milk only vs no FA		1.60 (0.79, 3.20)	0.19
Food allergy : egg vs no FA		1.33 (0.63, 2.79)	0.45
Food allergy : other FA vs no FA		0.82 (0.47, 1.43)	0.49
Age : 5-y increase		1.02 (0.81, 1.28)	0.87
Gender : female vs male		1.07 (0.72, 1.59)	0.74
Race : African American vs Caucasian		1.75 (1.16, 2.63)	0.008
Race : African American vs others		0.96 (0.40, 2.33)	0.93
Asthma : Yes vs no	· · · · · · · · · · · · · · · · · · ·	1.73 (1.11, 2.70)	0.02
Allergic rhinitis : Yes vs no		1.19 (0.80, 1.78)	0.40
Atopic dermatitis : Yes vs no		0.98 (0.64, 1.50)	0.94
	0.50 1.0 2.0 4.0		

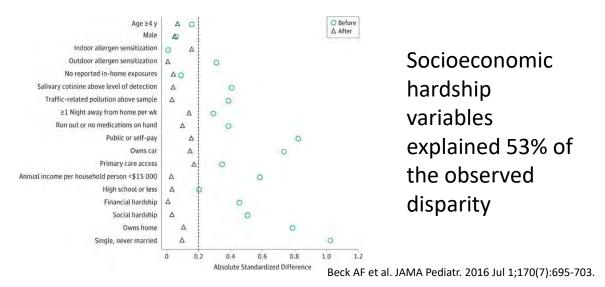
Food Insecurity Risk Factors

Food insecurity is associated with poorer quality of life.

Dilley MA et al. Pediatr Allergy Immunol. 2019 May;30(3):363-369.

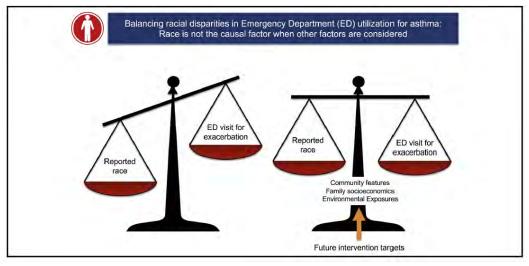


Peanut Butte Flour 1 lb M Flour 1 lb Bread 1 lb Eggs 1 doz.

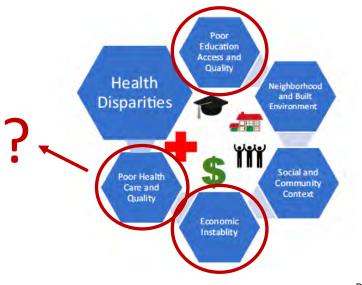

Free-Fi marketp	LACE			Free From
		2 PATH od allergies		101 101 Jan 140
Item	*Price	Substitute	*Price	Price Diffe
Spaghetti	\$1.55	Gluten Free Spaghetti	\$5.05	\$3.50
Egg Noodles T Ib	\$1.75	Gluten Free Fusilii Pasta	\$5.05	\$3.80
Elbow Macaroni T Ib	\$1.28	Gluten Free Penne Pasta	\$5.05	\$3.77

	*Price	Substitute	*Price	Price Difference	Percent Increase
	\$1.55	Gluten Free Spaghetti	\$5.05	\$3.50	226%
eș T Ib.	51.75	Gluten Free Fusilli Pasta	\$5.05	\$3.80	304%
aroni 1 lb	\$1.28	Gluten Free Penne Pasta	\$5.05	\$3.77	294%
ter 1 lb W	\$1.79	Sunflower Seed Spread	\$7,89	\$6.10	340%
w	\$0.44	Gluten Free Flour	\$3.63	\$3.19	725%
	50.44	Coconut Flour	\$5.39	\$5.10	1159%
w	\$1.46	Gluten Free Bread	\$7.19	\$5.73	392%
	51.09	Egg Replacer	\$5.44	\$4.35	399%

UDGET



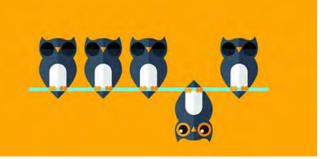
Asthma readmission disparity explained after statistically balancing SES variables


41

Racial disparities in asthma-related ED use are evident between black and white patients with asthma but can be eliminated when socioeconomic and environmental variables are equally balanced between groups.

Fitzpatrick et al. JACI 2019

Social Determinants of Health



Davis et al. JACI. 2021.

43

Implicit Bias is.....

 A bias that results from the tendency to process information based on <u>unconscious</u> <u>associations and feelings</u>, even when these are contrary to one's conscious or declared beliefs

The bias blind spot is the cognitive bias of recognizing the impact of biases on the judgment of others, while failing to see the impact of biases on one's own judgment.

We're Not Bad, We're Human.

• Healthcare professionals have implicit biases - No one is immune.

- We resist the unfamiliar, and our processes can reflect or reinforce bias.
- Studies show a significant positive correlation between level of implicit bias and lower quality of health care.

Healthcare Quality and Implicit

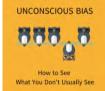
(Unconscious) Bias

Implicit bias affects clinical judgement and behavior

• Bias is evident either in the diagnosis, the treatment recommendations, the number of questions asked of the patient, the number of tests ordered, or other responses.

• There are specific determinants of bias

 Socio-demographic characteristics of physicians and nurses (e.g. gender, race, type of healthcare setting, years of experience, country where medical training received) are correlated with level of bias.


FitzGerald C, Hurst S. Implicit bias in healthcare professionals: a systematic review. BMC Med Ethics. 2017 Mar 1;18(1):19. https://www.boyden.com/media/checking-your-blind-spot-ways-to-find-and-fix-unconscious-bias-7627148/index.htm

What You Can Do


What Can You Do to Minimize Your Implicit Bias?

Project Implicit®

Harvard Implicit Association Test -Harvard University implicit.harvard.edu

- Introspection: Explore and identify your own prejudices
- <u>Mindfulness</u>: Since you're more likely to give in to your biases when you're under pressure, practice ways to reduce stress
- <u>Perspective-taking</u>: Consider experiences from the point of view of the other person
- Learn to slow down: Before interacting with people from certain groups, pause and reflect to reduce reflexive actions
- <u>Individuation:</u> Evaluate people based on their personal characteristics rather than those affiliated with their group

"You can't eliminate bias but you can 'learn how to dance with it' to minimize its effect." Howard Ross

47

- Strategies to Help Reduce Food Allergy Health Disparities
 - Require medical provider training with cross-cultural education to reduce implicit/unconscious bias.
 - Recruit and hire diverse patient-facing faculty and staff, who can help educate non-English speaking patients or patients with low health literacy.
 - Identify systemic and other barriers to care for underserved populations in your practice/institution and develop strategies to address them.

Ali A et al. Can Respir J. 2019: 5165189. Apter AJ et al. J Allergy Clin Immunol. 2019;144(3):846-853.e11. George M et al. J Adv Nurs. 2019;75(4):876-887. Delaigue S et al. Frontiers in Public Health 2014; 2: 1-9.

BCM

Strategies to Help Reduce Food Allergy Health Disparities

 Implement more culturally sensitive patient education efforts and collaborative patient-clinician decision-making processes.

- Improve access to specialty care in underserved communities.
 - Develop relationships with community primary care physicians and other healthcare providers or organizations
 - Commit resources to have a proportion of patients in a practice who have public insurance
- Increase research studies addressing diagnosis, management and outcomes for underserved population

Ali A et al. Can Respir J. 2019: 5165189. Apter AJ et al. J Allergy Clin Immunol. 2019;144(3):846-853.e11. George M et al. J Adv Nurs. 2019;75(4):876-887. Delaigue S et al. Frontiers in Public Health 2014; 2: 1-9.

Strategies to Help Reduce Food Allergy Health Disparities

- Screen for social determinants of health (SDOH) with a non-biased approach and address in office visits.
 - https://www.aafp.org/journals/fpm/blogs/inpractice/entry/social_determina nts.html
- Give patient education about SDOH and provide clinical care resources to address them
 - Social service resources like auntbertha (www.findhelp.org) and 211 (www.211.org)
 - Dietary resources like Food Equality Initiative
- Join and advocate through medical societies and lay organizations for policy change in insurance coverage for underserved communities.

• Engage trainees from minority communities for training and mentoring opportunities.

Ali A et al. Can Respir J. 2019: 5165189. Apter AJ et al. J Allergy Clin Immunol. 2019;144(3):846-853.e11. George M et al. J Adv Nurs. 2019:75(4):876-887. Delaigue S et al. Frontiers in Public Health 2014: 2: 1-9.: Wear Det al. AcadMed. 2017:92(3):312-317.

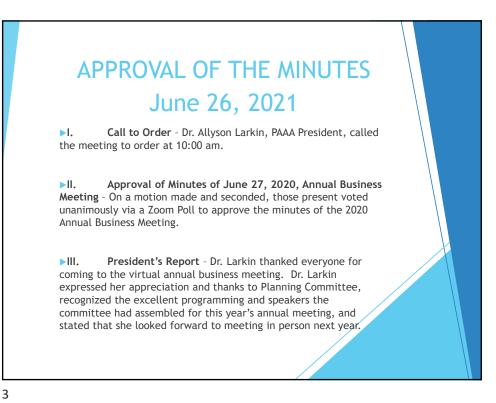
Conclusions

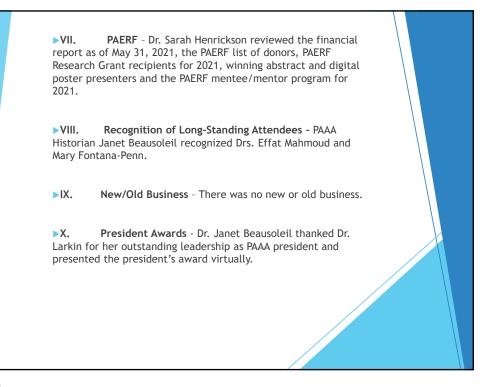
- Health disparities are significant in populations with food allergies.
- Socioeconomic factors and other social determinants of health contribute to these disparities.
- Health disparities include increased risks for anaphylaxis and ER visits and lack of access to subspecialty care.
- Understanding the key features to recognize the presentation and concerns of patients from underserved communities with food allergies can target early, specific and meaningful prevention strategies and interventions.

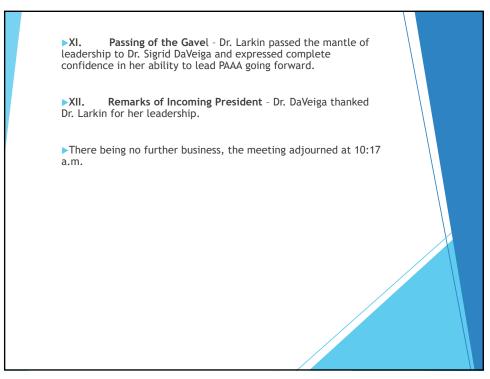
PENNSYLVANIA ALLERGY & ASTHMA ASSOCIATION

73RD OPMA ANNUAL MEETING

Annual Business Meeting


Saturday, June 25, 2022 9:45 a.m. – 10:15 a.m.



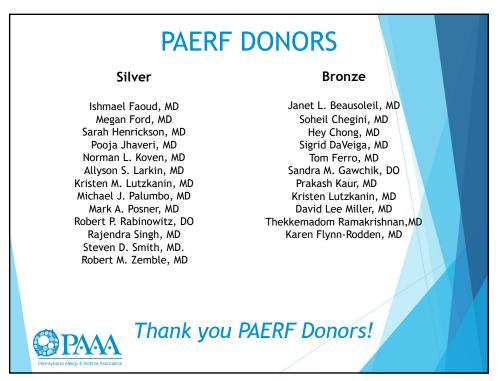


► IV. Treasurer's Report/Finance Committee - Dr. Robert Zemble reported on the financial statement as of December 2020. He commented on PAAA's total assets and total liabilities. On a motion made and seconded, those present voted unanimously via a Zoom Poll to accept the financial statement.

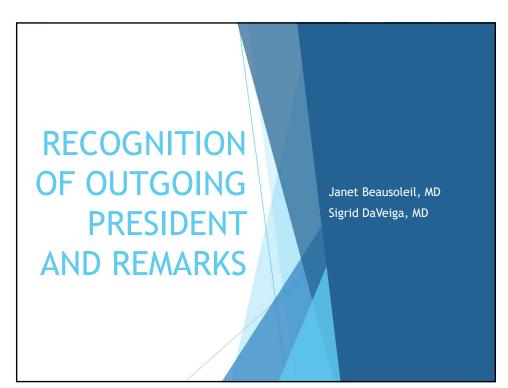
▶ V. Report of the Membership Committee - Dr. Janet Beausoleil reported on the membership statistics. She reported that PAAA gained one new member and three new fellows in training over the last year. The current membership stands at 177 dues-paying members. The Board has agreed to conduct an outreach drive to recoup these nonrenewing members.

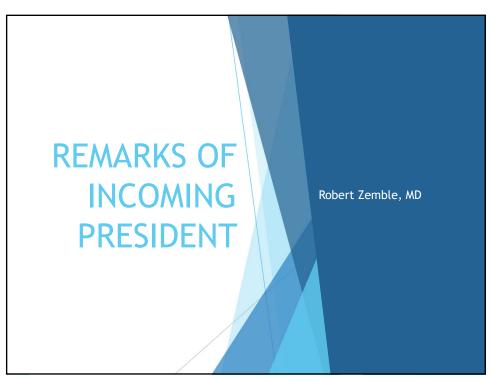
► VI. Report of the Nominating Committee - In the absence of Dr. Fisher, Dr. Larkin presented the Nominating Committee slate and called for any nominations from the floor. Hearing none, on a motion made and seconded, those present voted unanimously via a Zoom Poll to accept the slate as presented.

TREASURE Pennsylvania Allergy and As Statement of Financi December 31, 2	sthma Association al Position		
ASSETS Ceah - Checking Caab Manaparternent Total Caah Total Caah Accounts Receivable Prepaid Expenses TOTAL ASSETS	YEAR TO DATE 50.00 70.046.56 497,440.92 567,467,48 150.00 0.00 567,637,48	PRIOR YEAR TO DATE 3,314,05 375,221,09 488,836,55 3,300,00 0,00 492,136,55	
LIABILITIES AND NET ASSETS Accounts Payable - General Accounts Payable - General Unsainties PAMED Total Labilities Net Assets, January 1 Chango in Net Assets Net Assets, Year to Date TOTAL LIAB AND NET ASSETS	\$2,291,90 6,861,38 40,850,00 57,803,28 469,949,14 39,885,66 509,834,20 567,637,48	5,088,48 6,248,83 9,850,03 22,167,41 448,313,26 21,655,85 409,049,14 492,136,55	
Prepared by the Poundate	on of the PA Medical Society		


C	urrent Membershi	
Active		158
Associate		2
Corresponding		10
Emeritus		50
In-training		11
Total Members		231
Active Taha Al-Shaikhly, MD David Anmuth, MD	Active Jennifer Kannan, MD John Kim, MD	Corresponding Victoria Durf, MSN Matthew D. Stryker, Pharm D
islaw Gabryszewski, MD Sujal Ghelani, MD Marc Goldstein, MD aria Paula Henao, MD auren Kaminsky, MD	Mosopefoluwa Lanlokun, MD Archana Mehata, MD Sunjay Modi, MD Matthew Norris, MD Mary Lee Wong, MD, MS	In Training Hannah Harrison, MD Kim Nguyen, MD Sunjay Modi, MD Marvi Rizwan, MD Elizabeth Hodara, MD

	OMMITTEE REPORT of Regents Nominees	
Name	Position	
Antonella Cianferoni, MD, PhD, Philadelphia, PA	Member-At-Large (4-year term)	
Desha M, Jordan, MD, Pittsburgh, PA	Member-At-Large (4-year term)	
Mosopefoluwa Lanlokuna, MD Pittsburgh, PA	Member -At-Large (1-year term)	
Matthew Norris, MD, Hershey, PA	FIT (1-year term)	
Appointments		
Magee DeFelice, MD	Program Chair 2023	
Sarah Henrickson, MD, PhD	Assistant Program Chair 2023	
Penney-Namia Allergy & Asthma Association		





PENNSYLVANIA ALLERGY & ASTHMA ASSOCIATION

73RD PAAA ANNUAL MEETING

Quality/Safety in the Allergy Practice

Presented by: Paige Wickner, MD, MPH

Saturday, June 25, 2022 11:30 a.m. – 12:15 p.m.

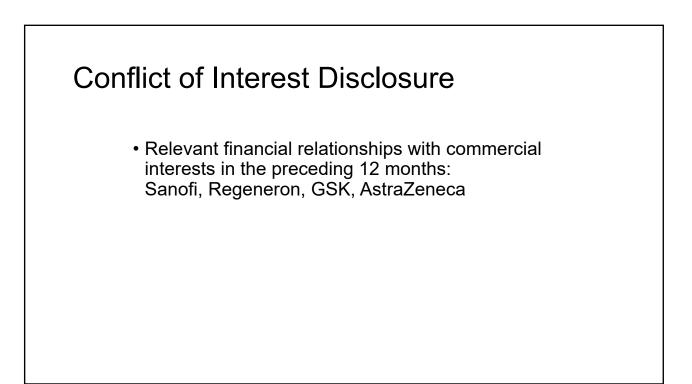
PAAA does not have permission to share slides.

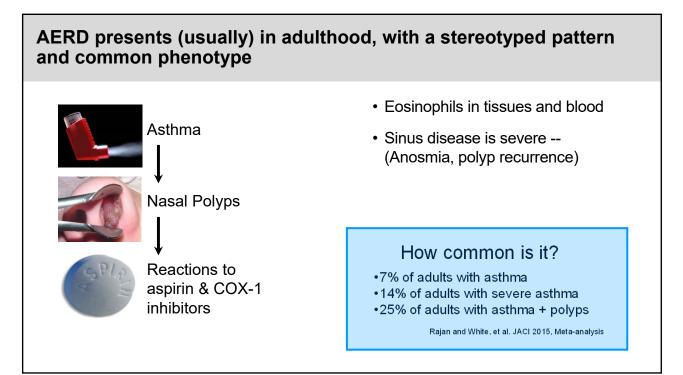
PENNSYLVANIA ALLERGY & ASTHMA ASSOCIATION

73RD PAA ANNUAL MEETING

WORKSHOP: Aspirin and NSAID Challenges

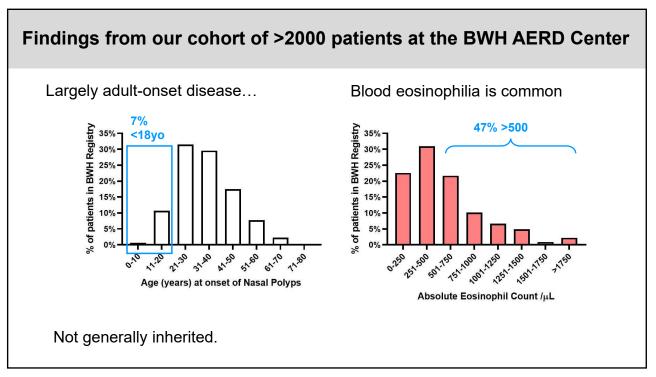
Presented by: Tanya Laidlaw, MD

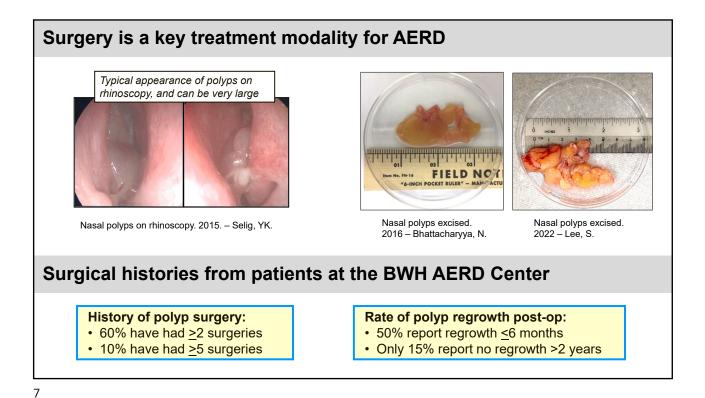

Saturday, June 25, 2022 1:15 p.m. – 2:45 p.m.

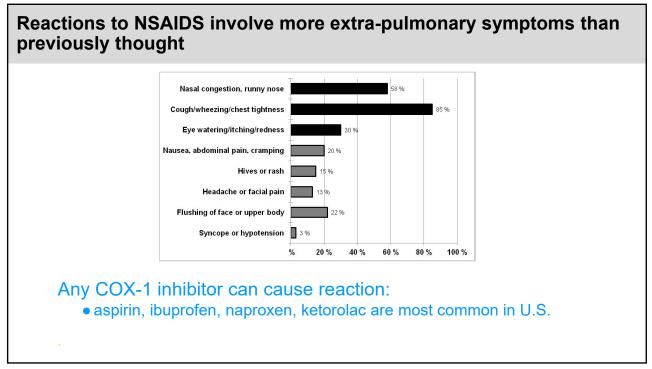


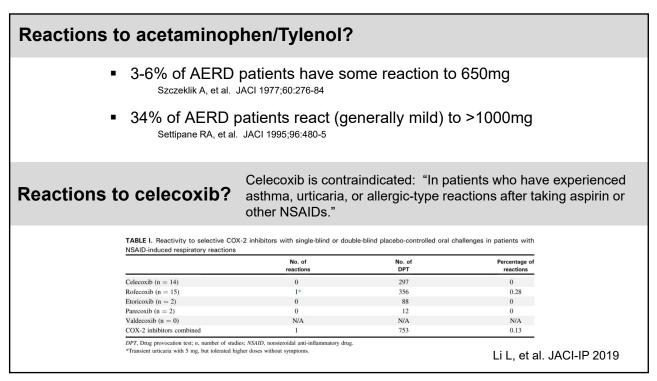
Pennsylvania Allergy & Asthma Association

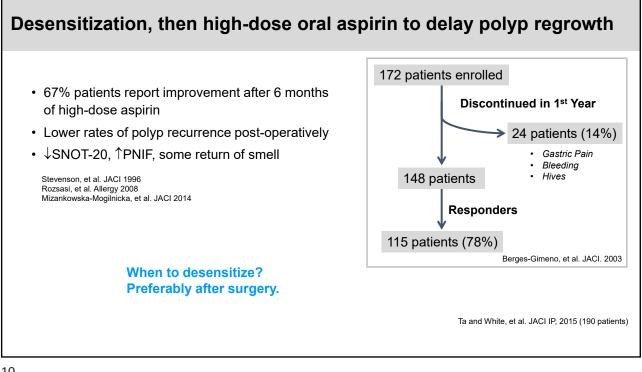
Aspirin-Exacerbated Respiratory Disease Diagnosis and Treatment		
Tanya M. Laidlaw, MD		
Division of Allergy and Clinical Immunology, Brigham and Women's Hospital Director of Translational Research in Allergy, Director of BWH AERD Center Associate Professor of Medicine, Harvard Medical School		
BRIGHAM AND WOMEN'S HOSPITAL AERD Center	ESPIRATORY INFLAMMATION	HARVARD MEDICAL SCHOOL

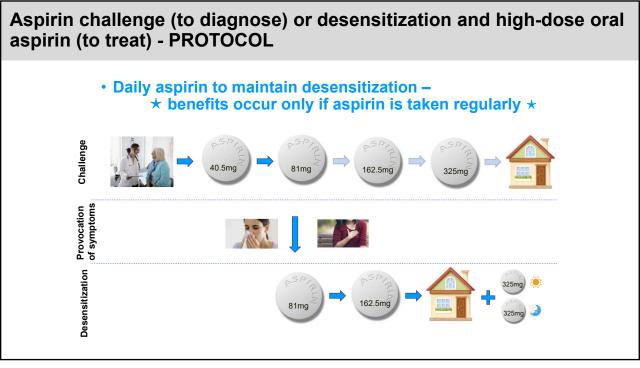


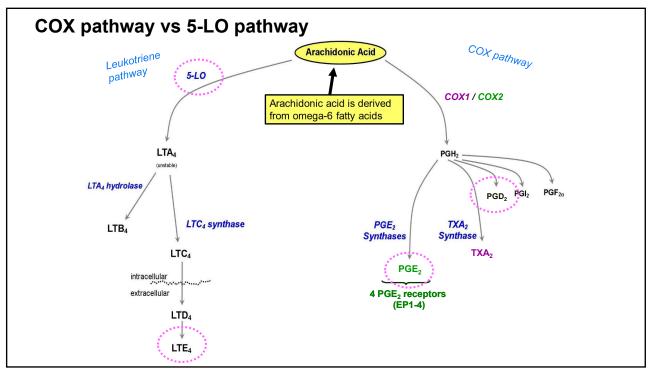

<text><text><text><text><text><text><image><image><image>

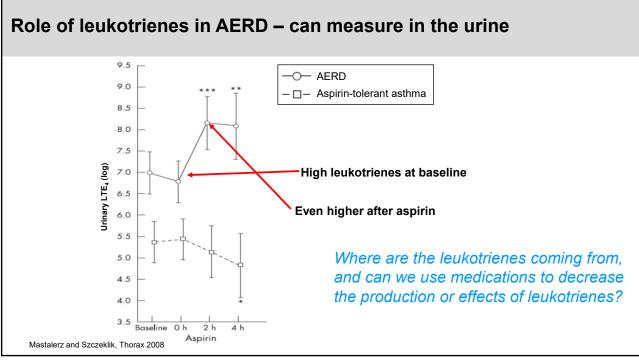


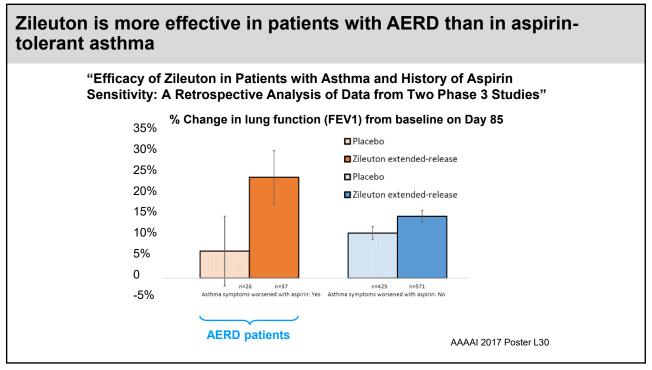

Classic AERD = 35 year-old "Danielle"

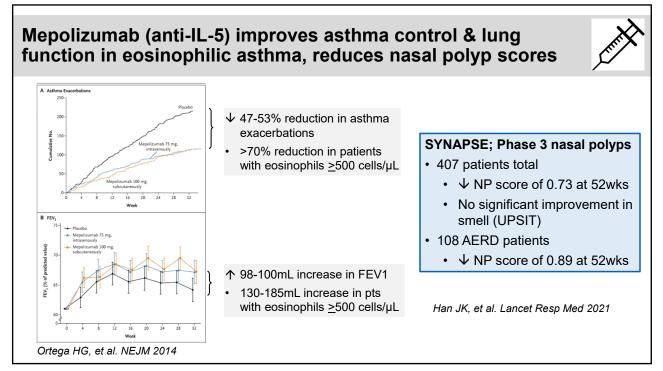

- Childhood \rightarrow healthy, no asthma or allergies
- $23yo \rightarrow$ "really bad cold" and persistent nasal congestion
- * 24yo \rightarrow asthma, continued congestion, lost sense of smell and taste
- 25yo → saw ENT surgeon, was "full of polyps", had 1st polyp surgery (great improvement!), but polyps returned in 6 months
- * 25yo \rightarrow Cold-flu tablet 2 h later sneezed, chest tightness, wheezing
 - \rightarrow 3 mo later **ibuprofen** to ER for albuterol and IV steroids
 - \rightarrow 6 months later took Aleve same reaction
- Polyp surgeries: 25yo, 27yo, (no surgery while had 2 kids), 33yo, 35yo
- Now → Inhaled steroids, montelukast, steroid sprays, loratidine, Albuterol 3-4 days/wk, <u>no sense of smell</u>, antibiotics for sinusitis 2-3 times a year, polyps are back

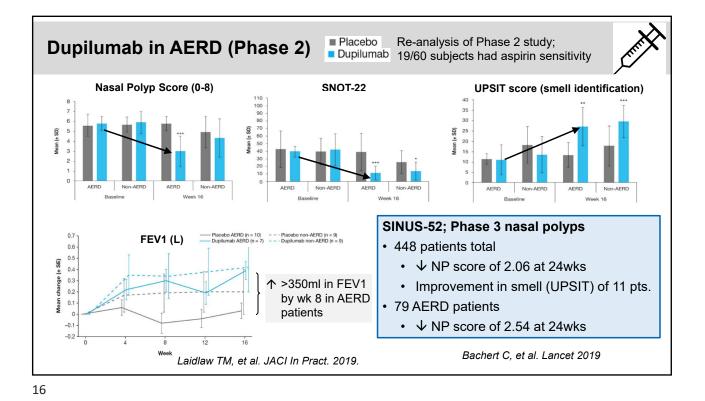


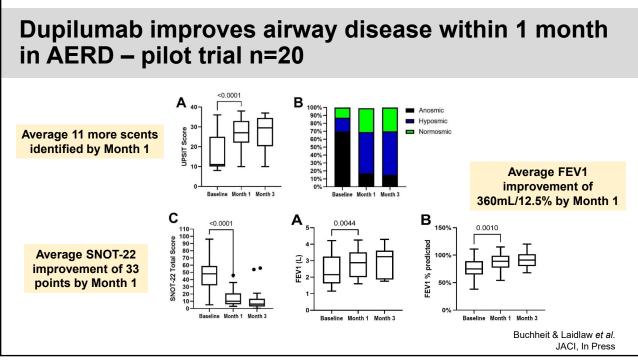


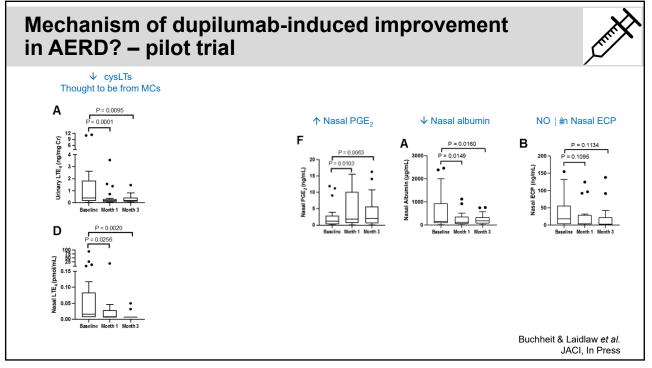


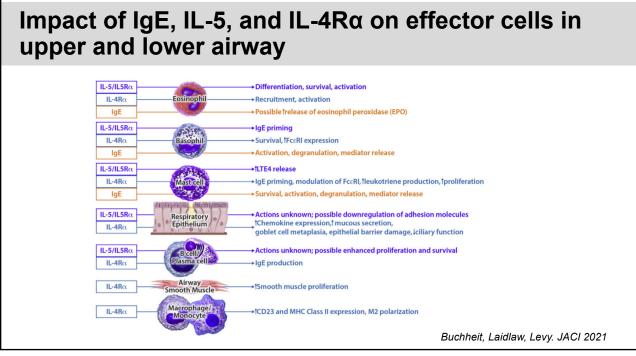


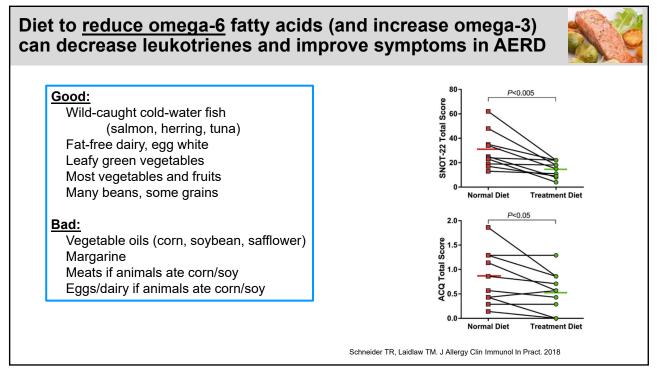


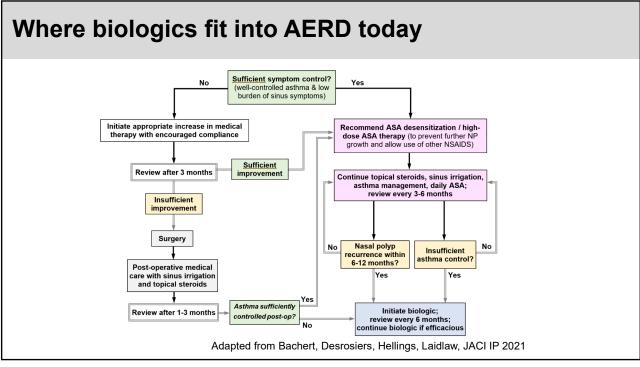


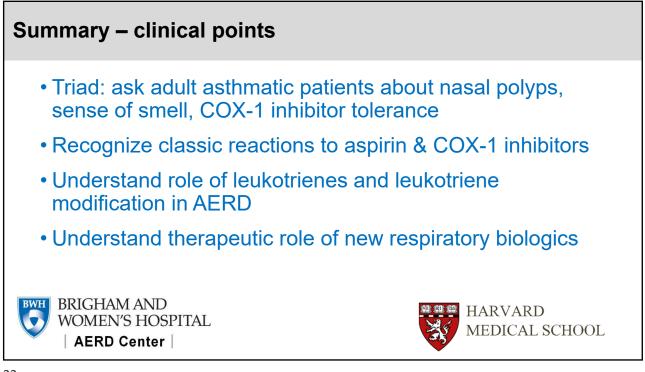












Kathleen Buchheit, MD **AERD** Center Co-Director

Jillian Bensko, PA-C **AERD Center**

Kara VanGuilder, BA Tessa Ryan, BA Research Coordinator Administration & Media

AERD Center

Regan Bergmark, MD

Jonathan Hacker, BA

Laboratory Technician

Rhinologist | ENT

Alanna McGill, BA **Research Coordinator**

Alice Maxfield, MD Rhinologist | ENT

Lily Li, MD Allergist | NSAID Allergy

Marie Lundberg, MD Rhinologist | ENT

Rachel Roditi, MD

Rhinologist | ENT

Stella Lee, MD Rhinologist | ENT

aerd.partners.org

PENNSYLVANIA ALLERGY & ASTHMA ASSOCIATION

73RD PAAA ANNUAL MEETING

Disparities in Asthma

Presented by: Torie Grant, MD, MHS

Saturday, June 25, 2022 12:15 p.m. – 1:00 p.m.

Pennsylvania Allergy & Asthma Association

Disparities in Asthma: A Focus on the Social Determinants of Health

Torie Grant, MD, MHS Assistant Professor of Medicine and Pediatrics Johns Hopkins University School of Medicine

Disclosures

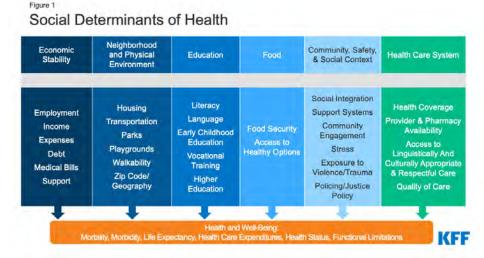
- Current Funding
 - National Institutes of Health K23 Mentored Patient-Oriented Research Career Development Award
 - American Academy of Allergy, Asthma, and Immunology Foundation Faculty Development Award

Objectives

1. Discuss asthma disparities through the lens of social determinants of health (SDoH)

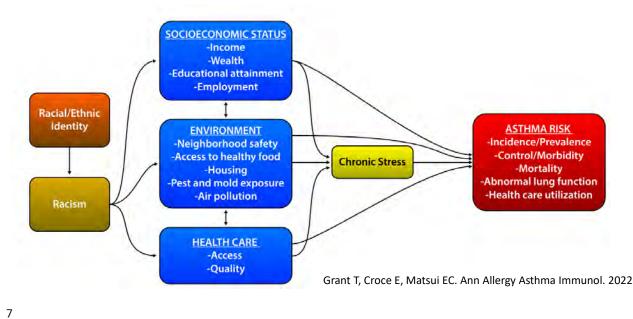
2. Highlight how disparities in socioeconomic status, physical environment, and health care influence racial and ethnic asthma disparities

What are Social Determinants of Health (SDoH?


"The social determinants of health are the **non-medical factors that influence health outcomes.** They are the conditions in which people are **born, grow, work, live, and age**, and the **wider set of forces and systems shaping the conditions of daily life**. These forces and systems include *economic policies and systems, development agendas, social norms, social policies and political systems.*"

What are Social Determinants of Health (SDoH)?

- Income and social protection
- Education
- Unemployment and job insecurity
- Working life conditions
- Food insecurity
- · Housing, basic amenities and the environment
- · Early childhood development
- Social inclusion and non-discrimination
- Structural conflict
- Access to affordable health services of decent quality.


https://www.who.int/health-topics/social-determinants-of-health

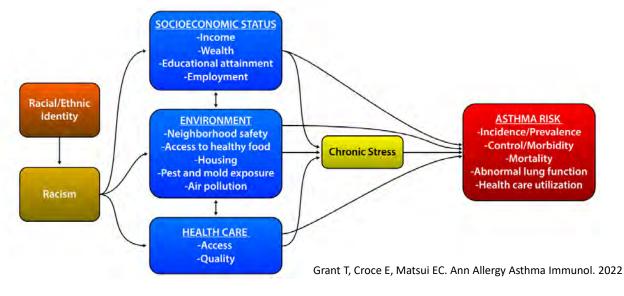
What are Social Determinants of Health (SDoH)?

https://www.kff.org/coronavirus-covid-19/issue-brief/tracking-social-determinants-of-health-during-the-covid-19-pandemic/

The relationship between racism, SDoH, and asthma disparities

Why talk about race and racism when we are discussing asthma disparities?

- Asthma prevalence varies by race/ethnicity
 - Non-Latinx (NL) Blacks 10.8%
 - Native American/Alaska Native 10.8%
 - NL Whites 7.6%
 - Latinx 6.7%
 - NL Asians 3.5%
 - NL Multiracial 11.5%


Why talk about race and racism when we are discussing asthma disparities?

- Asthma morbidity and mortality varies by race/ethnicity
 - Black Americans have higher rates ER visits and hospitalizations due to asthma¹
 - Black Americans have higher asthma mortality¹
 - Puerto Ricans and Dominican Americans have higher asthma prevalence, more exacerbations and ER visits due to asthma¹⁻³
 - 1. Moorman JE et al. MMWR Surveill Summ. 2007
 - 2. Rosser FJ, et al. Am J Respir Crit Care Med. 2014
 - 3. Dumanovsky T, et al. Journal of Asthma. 2007

What are race and ethnicity?

- Race and ethnicity are self-identified social constructs
- American Sociological Association
 - Race = "physical differences that groups and cultures consider socially significant"
 - Hispanic or Latinx Ethnicity = "shared culture, such as language, ancestry, practices, and beliefs"

The relationship between racism, SDoH, and asthma disparities

11

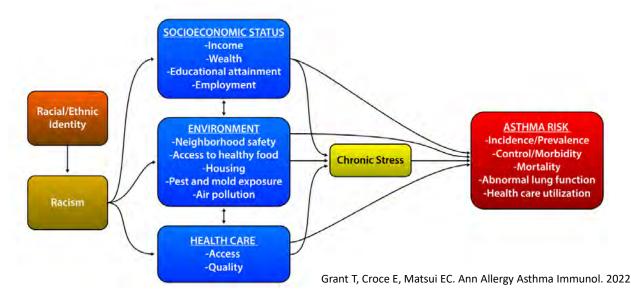
What is racism?

- Racism occurs at the individual and population level
- Prejudicial treatment of individuals and communities based on the belief that one race or ethnic group is superior or inferior to another
- Racism structures and affords opportunities and assigns value and worth based on an individual's self-identified race or ethnicity
- Structural racism, which is population-level racism, exists in our social, legal, economic, medical, housing, criminal justice, and political systems and unfairly denies opportunity and disadvantages racial and ethnic minority populations

What is racism?

America: Equity and Equality in Health 3

Structural racism and health inequities in the USA: evidence and interventions


Zinzi D Bailey, Nancy Krieger, Madina Agénor, Jasmine Graves, Natalia Linos, Mary T Bassett

Despite growing interest in understanding how social factors drive poor health outcomes, many academics, policy makers, scientists, elected officials, journalists, and others responsible for defining and responding to the public discourse remain reluctant to identify racism as a root cause of racial health inequities. In this conceptual report, the third in a Series on equity and equality in health in the USA, we use a contemporary and historical perspective to discuss research and interventions that grapple with the implications of what is known as structural racism on population health and health inequities. Structural racism refers to the totality of ways in which societies foster racial discrimination through mutually reinforcing systems of housing, education, employment, earnings, benefits, credit, media, health care, and criminal justice. These patterns and practices in turn reinforce discriminatory beliefs, values, and distribution of resources. We argue that a focus on structural racism offers a concrete, feasible, and promising approach towards advancing health equity and improving population health.

Lanort 2017; 389: 1453-63 See Editorial page 1369 See Comment pages 1376 and 1378

This is the third in a Series of five papers about equity and equality in health in the USA New York City Department of Health and Mental Hygiene, Long Island City, NY, USA (2 D Bailey ScD, N Linos ScD, M T Basset MD); Department

The relationship between racism, SDoH, and asthma disparities

Socioeconomic status (SES)

- Broad marker of social standing
- Affects basic needs such as housing, food, and education
- Affects upward mobility in society
- Often income, highest educational degree obtained, occupation, type of health insurance, or zip code are used as a surrogate for SES in medicine
- Income, wealth, education, and employment

Socioeconomic status (SES) – Income

- Low income has been repeatedly linked to increased asthma prevalence, exacerbations, hospitalizations and ICU admission
- In 2019, CDC¹ reports a dose-response relationship between poverty level and asthma prevalence:
 - 11.8% family income <100% of the poverty threshold
 - + 8.5% family income 100% to <250% of the poverty threshold
 - 7.3% family income 250% to <450% of the poverty threshold
 - 5.9% family income \geq 450% of the poverty threshold
- 7% increase in the odds of prevalent asthma for each one-unit decrease in the household income to poverty ratio²

Socioeconomic status (SES) – Income

- Adults with a household income of <\$50,000¹
 - 1.6-fold higher rate of asthma treatment failure
 - 2.0-fold higher rate of asthma exacerbations
- Children living in extreme poverty (household income <\$10,000)²
 - 125% higher odds of having a prior ICU admission for asthma
- Home ownership is associated with a 38% decreased in odds of ER visit for asthma in children³

¹Cardet JC, et al. *JACI* 2018 ²Bollinger ME, et al. *Ann. Allergy Asthma Immunol* 2019 ³ Hughes HK, et al. Acad Pediatr. 2017

17

SES – Education


• Lower educational attainment contributes to limited health literacy

- CDC defines individual health literacy as:
 - "the degree to which individuals have the ability to find, understand, and use information and services to inform health-related decisions and actions for themselves and others."1
- Low health literacy²
 - Decreased asthma understanding and the perceived increased need for asthma medications
 - Inability to follow an asthma action plan
 - · Lower likelihood of being treated by an asthma specialist
 - Poorer asthma control
 - More missed days of school
 - Increased ER visits and hospitalizations for asthma

¹ <u>https://www.cdc.gov/healthliteracy/learn/index.html</u>

² Morrison AK, et al. Pediatrics in Review 2019

The relationship between racism, SDoH, and asthma disparities

19

Environment

- Neighborhood Safety
- Access to Affordable, Healthy Food
- Housing and Exposure to Pest, Mold, and Pollution

Environment – Neighborhood Safety

- Children in low-income and disadvantaged communities are frequently exposed to violence
- In a study out of Boston, maternal report of increased community violence during pregnancy was associated with increased risk of wheeze at age 2 in the offspring¹
- In a study out of Chicago, neighborhoods with a high incidence of violent crime having a 27% increased odds of prevalent neighborhood asthma²
- In a study out of Chicago, living in a neighborhood with increased property and violent crimes, children had increased odds of parent-reported wheezing, lifetime asthma, and ER use and hospitalization due to asthma ³

¹Chiu Y-HM, et al. *JACI* 2014 ²Gupta RS, et al. *Ann. Allergy Asthma Immunol* 2010 ³Eldeirawi K, et al. *Ann. Allergy Asthma Immunol* 2016

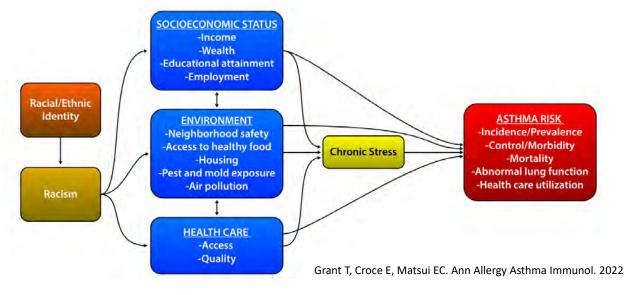
21

Environment – Access to Affordable, Healthy Food

- Low-income communities have fewer healthy food options and poorer quality produce
- Healthy food is more expensive
- Low-income Black families are less likely to live in neighborhood with access to affordable healthy food¹
- Healthier foods, such as diets rich in fruits and vegetables, have been associated with fewer asthma symptoms and higher lung function²
- Lack of affordable healthy food has also been linked to obesity, which is associated with asthma incidence and asthma morbidity³
- Proposed mechanisms for healthier diets effects on asthma include antiinflammatory effects, changes in the intestinal microbiome, and reduced risk of obesity²

Environment – Housing, Indoor Exposures

- Poor housing quality and home disrepair have been associated with risk of childhood asthma and asthma morbidity¹
- Poor housing repair is associated with pest (mouse, cockroach) allergen and mold exposure
- Pest allergen exposure has been repeatedly linked to risk of asthma, asthma prevalence, morbidity and abnormal lung function
- Exposure to mold is associated with childhood wheeze, asthma prevalence, and asthma morbidity


¹Hughes HK, et al. Acad Pediatr. 2017

23

Environment – Pollution

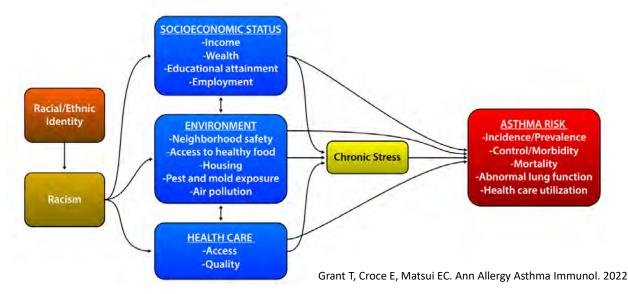
- Racial and ethnic minority urban communities are exposed to higher levels of indoor air pollution, which is associated with asthma symptoms¹
- Outdoor air pollution is associated with incident asthma, asthma morbidity, and lung function decline
- Black residents, persons living in poverty, and persons with lower education are more likely to be exposed to higher levels of outdoor air pollution²
- A study of eight California cities found higher diesel particle emissions in historically redlined communities³
 - 2.4 fold increase in age-adjusted ER visits for asthma

The relationship between racism, SDoH, and asthma disparities

25

Health Care Access and Quality

- Black and Latinx patients are more likely to be uninsured than White patients¹
- Black and Latinx families are more likely to live in zip codes with primary care physician shortages²
- Black and Latinx children with the same insurance were less likely to see a specialist for asthma than White children³
- Lack of health insurance, access to primary care, and fewer referrals to asthma specialists all result in higher ER utilization for asthma, increased school and work absences, decreased provider consistency, uncontrolled asthma, and overall worse asthma care


¹https://www.census.gov/content/dam/Census/library/publications/2019/demo/p60-267.pdf ² Gaskin DJ, et al. *Health* Serv Res. 2012 ³Stewart KA, et al. Arch Pediatr Adolesc Med. 2010

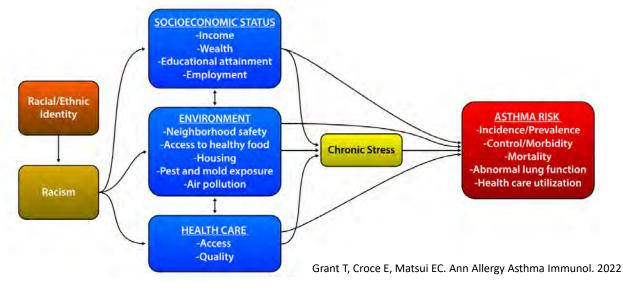
Health Care Quality

- Underuse of asthma biologics in Black and Latinx patients
- 2021 study found patients with public insurance were less like to be prescribed a biologic for asthma treatment¹
- Among patients with public insurance, racial and ethnic minority patients were less likely to be prescribed an asthma biologic compared with White patients¹

¹Akenroye AT, et al. J Allergy Clin Immunol Pract 2021

Chronic Stress

- Families living in poverty and racial and ethnic minority populations experience higher levels of stress from many sources:¹
 - income instability
 - lower education
 - fewer assets
 - barriers to employment
 - food insecurity
 - higher rates of incarceration
 - social disadvantage
 - exposure to violence
- High levels of chronic stress in children and adults have been associated with increased asthma exacerbations, decreased asthma control, increased hospitalizations, decreased quality of life, and decreased lung function


¹https://www.apa.org/pi/health-equity/resources/stress-report.pdf

29

Chronic Stress

- Effects of chronic stress on asthma include chronic hypothalamicpituitary-adrenocortical activation¹ leading to:
 - $\downarrow\beta2$ adrenergic and glucocorticoid receptors
 - \downarrow Responsiveness to asthma medications
 - **Asthma symptoms**
- Maternal prenatal stress² leading to:
 - \uparrow IL-13 response , \downarrow IFN- γ response to allergen/mitogen stimulation in cord blood mononuclear cells
- Early life (<3yrs) exposure to environmental stressors and maternal depression, anxiety has been associated with asthma diagnosis³

The relationship between racism, SDoH, and asthma disparities

31

Final Thoughts

- SDoH such as poverty, inequities in education and employment, poor housing quality, greater risk of exposure to pests, mold, and pollution, unequal health care access and quality, and high levels of chronic stress
- SDoH have been associated with asthma prevalence/incidence, morbidity, exacerbations, and abnormal lung function, which suggests that they are also likely a major cause of asthma disparities

Knowledge Gaps

- Degree to which SDoH contribute to asthma disparities
- Which SDoH contribute most to asthma disparities
- Mechanisms by which SDoH cause asthma disparities
- What are the most impactful approaches to mitigating economic barriers to asthma care and self-management
- Which environmental exposures should be prioritized for targeting to reduce asthma disparities
- What are the most impactful approaches to improving health care access and quality for racial and ethnic minority populations
- Which individual-level and systems-level interventions are most effective at reducing racial and ethnic asthma disparities

33

References

- https://www.who.int/health-topics/social-determinants-of-health
- <u>https://www.kff.org/coronavirus-covid-19/issue-brief/tracking-social-determinants-of-health-during-the-covid-19-pandemic/</u>
- Grant T, Croce E, Matsui EC. Asthma and the social determinants of health. Ann Allergy Asthma Immunol. 2022 Jan;128(1):5-11. doi: 10.1016/j.anai.2021.10.002
- https://www.cdc.gov/asthma/most recent national asthma data.htm
- Moorman JE, Rudd RA, Johnson CA, et al. National surveillance for asthma--United States, 1980-2004. *MMWR Surveill Summ*. 2007;56(8):1-54.
- Rosser FJ, Forno E, Cooper PJ, Celedón JC. Asthma in Hispanics. An 8-Year Update. Am J Respir Crit Care Med. 2014;189(11):1316-1327. doi:10.1164/rccm.201401-0186PP
- Dumanovsky T, Matte TD. Variation in Adult Asthma Prevalence in Hispanic Subpopulations in New York City. *Journal of Asthma*. 2007;44(4):297-303. doi:10.1080/02770900701344140
- <u>https://www.asanet.org/topics/race-and-ethnicity</u>
- Bailey ZD, Krieger N, Agénor M, Graves J, Linos N, Bassett MT. Structural racism and health inequities in the USA: evidence and interventions. *The Lancet*. 2017;389(10077):1453-1463. doi:10.1016/S0140-6736(17)30569-X

References

- Keet CA, McCormack MC, Pollack CE, Peng RD, McGowan E, Matsui EC. Neighborhood poverty, urban residence, race/ethnicity, and asthma: Rethinking the inner-city asthma epidemic. Journal of Allergy and Clinical Immunology. 2015;135(3):655-662
- Cardet JC, Louisias M, King TS, et al. Income is an independent risk factor for worse asthma outcomes. Journal of Allergy and Clinical Immunology. 2018;141(2):754-760.e3. doi:10.1016/j.jaci.2017.04.036
- Bollinger ME, Butz A, Tsoukleris M, Lewis-Land C, Mudd S, Morphew T. Characteristics of inner-city children with life-threatening asthma. Annals of Allergy, Asthma & Immunology. 2019;122(4):381-386. doi:10.1016/j.anai.2019.02.002
- Hughes HK, Matsui EC, Tschudy MM, Pollack CE, Keet CA. Pediatric Asthma Health Disparities: Race, Hardship, Housing, and Asthma in a National Survey. Acad Pediatr. 2017;17(2):127-134. doi:10.1016/j.acap.2016.11.011
- <u>https://www.cdc.gov/healthliteracy/learn/index.html</u>
- Morrison AK, Glick A, Yin HS. Health Literacy: Implications for Child Health. Pediatrics in Review. 2019;40(6):263-277. doi:10.1542/pir.2018-0027

35

References

- Chiu Y-HM, Coull BA, Sternthal MJ, et al. Effects of prenatal community violence and ambient air pollution on childhood wheeze in an urban population. *J Allergy Clin Immunol*. 2014;133(3):713-722.e4. doi:10.1016/j.jaci.2013.09.023
- Gupta RS, Zhang X, Springston EE, et al. The association between community crime and childhood asthma prevalence in Chicago. *Annals of Allergy, Asthma & Immunology*. 2010;104(4):299-306. doi:10.1016/j.anai.2009.11.047
- Eldeirawi K, Kunzweiler C, Rosenberg N, et al. Association of neighborhood crime with asthma and asthma morbidity among Mexican American children in Chicago, Illinois. *Annals of Allergy, Asthma & Immunology*. 2016;117(5):502-507.e1. doi:10.1016/j.anai.2016.09.429
- Bower KM, Thorpe RJ, Rohde C, Gaskin DJ. The Intersection of Neighborhood Racial Segregation, Poverty, and Urbanicity and its Impact on Food Store Availability in the United States. Prev Med. 2014;58:33-39. doi:10.1016/j.ypmed.2013.10.010
- Grant T, Brigham EP, McCormack MC. Childhood Origins of Adult Lung Disease as Opportunities for Prevention. J Allergy Clin Immunol Pract. 2020;8(3):849-858. doi:10.1016/j.jaip.2020.01.015
- Khalid F, Holguin F. A review of obesity and asthma across the life span. J Asthma. 2018;55(12):1286-1300. doi:10.1080/02770903.2018.1424187

References

- Rauh VA, Chew GR, Garfinkel RS. Deteriorated housing contributes to high cockroach allergen levels in inner-city households. Environ Health Perspect. 2002;110(Suppl 2):323-327.
- Peters JL, Levy JI, Rogers CA, Burge HA, Spengler JD. Determinants of Allergen Concentrations in Apartments of Asthmatic Children Living in Public Housing. J Urban Health. 2007;84(2):185-197. doi:10.1007/s11524-006-9146-2
- Chew GL, Perzanowski MS, Miller RL, et al. Distribution and determinants of mouse allergen exposure in low-income New York City apartments. Environ Health Perspect. 2003;111(10):1348-1351.
- Matsui EC. Environmental exposures and asthma morbidity in children living in urban neighborhoods. Allergy. 2014;69(5):553-558. doi:10.1111/all.12361
- Disparities in the Impact of Air Pollution. https://www.lung.org/clean-air/outdoors/who-is-at-risk/disparities
- Kioumourtzoglou M-A, Schwartz J, James P, Dominici F, Zanobetti A. PM2.5 and mortality in 207 US cities: Modification by temperature and city characteristics. Epidemiology. 2016;27(2):221-227. doi:10.1097/EDE.00000000000422
- Tessum CW, Paolella DA, Chambliss SE, Apte JS, Hill JD, Marshall JD. PM2.5 polluters disproportionately and systemically affect people of color in the United States. Science Advances. 2021;7(18):eabf4491. doi:10.1126/sciadv.abf4491
- O'Neill MS, Jerrett M, Kawachi I, et al. Health, wealth, and air pollution: advancing theory and methods. Environ Health Perspect. 2003;111(16):1861-1870. doi:10.1289/ehp.6334

37

References

- Nardone A, Casey JA, Morello-Frosch R, Mujahid M, Balmes JR, Thakur N. Associations between historical residential redlining and current age-adjusted rates of emergency department visits due to asthma across eight cities in California: an ecological study. The Lancet Planetary Health. 2020;4(1):e24-e31. doi:10.1016/S2542-5196(19)30241-4
- Berchick ER, Barnett JC, Upton RD. Health Insurance Coverage in the United States: 2018. :44. ttps://www.census.gov/content/dam/Census/library/publications/2019/demo/p60-267.pdf
- Gaskin DJ, Dinwiddie GY, Chan KS, McCleary RR. Residential Segregation and the Availability of Primary Care Physicians. Health Serv Res. 2012;47(6):2353-2376. doi:10.1111/j.1475-6773.2012.01417.x
- Stewart KA, Higgins PC, McLaughlin CG, Williams TV, Granger E, Croghan TW. Differences in prevalence, treatment, and outcomes of asthma among a diverse population of children with equal access to care: findings from a study in the military health system. Arch Pediatr Adolesc Med. 2010;164(8):720-726. doi:10.1001/archpediatrics.2010.100
- Akenroye AT, Heyward J, Keet C, Alexander GC. Lower Use of Biologics for the Treatment of Asthma in Publicly Insured Individuals. J Allergy Clin Immunol Pract. Published online February 6, 2021:S2213-2198(21)00169-0. doi:10.1016/j.jaip.2021.01.039

References

- Stress and Health Disparities: Contexts, Mechanisms, and Interventions Among Racial/Ethnic Minority and Low Socioeconomic Status Populations: (500202018-001). Published online 2017. doi:10.1037/e500202018-001
- Landeo-Gutierrez J, Celedón JC. Chronic stress and asthma in adolescents. Annals of Allergy, Asthma & Immunology. 2020;125(4):393-398. doi:10.1016/j.anai.2020.07.001
- Wright RJ, Visness CM, Calatroni A, et al. Prenatal Maternal Stress and Cord Blood Innate and Adaptive Cytokine Responses in an Inner-City Cohort. Am J Respir Crit Care Med. 2010;182(1):25-33. doi:10.1164/rccm.200904-0637OC
- Rosa M, Lee A, Wright R. Evidence establishing a link between prenatal and early-life stress and asthma development. Current Opinion in Allergy and Clinical Immunology. 2018;18:1. doi:10.1097/ACI.000000000000421

Aspirin Desensitization Protocols (Inpatient and/or Outpatient)

Recommended Protocols:

History of Urticaria/Angioedema with Aspirin

Time	Dose of aspirin
0	5 mg
1/2 hr	10 mg
1 hr	20 mg
1½ hr	40 mg
2 hr	81 mg
2½ hr	162 mg
3 hr	325 mg

No premedication recommended

History of Respiratory Symptoms with Aspirin

Time	Dose of aspirin	
0 hour	40 mg	
$1\frac{1}{2}$ hours	81 mg	
3 hours	162 mg	
4 ¹ / ₂ hours	325 mg	
6 hours	650 mg (optional)	

Consider premedication with leukotriene antagonist (montelukast, zileuton) to decrease lower respiratory symptoms

Safety of Outpatient Aspirin/NSAID Challenges in Non-AERD Patients

	No Reaction	Immediate Reaction	Delayed Reaction	Total
Aspirin	114	15	3	132
Ibuprofen	52	6	2	60
Naproxen	8	1	1	10
Other NSAID*	2	1	0	3
Total	176 (85.9%)	23 (11.2%)	6 (2.9%)	205 (100%)

>85% with no reaction and allergy removed Of those that reacted, 62.5% occurred at >60 minutes Li L et al, J Allergy Clin Immunol Pract 2021.

Presentations for Sunday, June 26, 2022

Rheumatology in the AI Clinic

Megan Cooper, MD, PhD

Patient Education in the Office

David Stukus, MD

Immune Dysregulation

Megan Cooper, MD, PhD

Oral Food Challenges in Infants and Toddlers

David Stukus, MD

Pennsylvania Allergy & Asthma Association

PENNSYLVANIA ALLERGY & ASTHMA ASSOCIATION

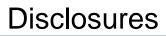
73RD PAAA ANNUAL MEETING

Rheumatology in the AI Clinic

Presented by: Megan Cooper, MD, PhD

Sunday, June 26, 2022 7:45 a.m. – 8:30 a.m.

Rheumatology in the Al Clinic


Megan A. Cooper, MD, PhD

Professor of Pediatrics, Division of Rheumatology/Immunology Director, Clinical Immunology Washington University in St. Louis Cooper_m@wustl.edu

Washington University in St. Louis

SCHOOL OF MEDICINE

- Dr. Cooper has the following disclosures to declare:
- Consultant: Enzyvant
- No products related to this disclosure will be discussed
- · All therapies discussed are off-label

Washington University in St. Louis School of Medicine

1

Learning Objectives

- 1. Identify how rheumatologic disease can present to the allergist/immunologist
- 2. Identify overlap between immune deficiency and rheumatologic disease

3

Washington University in St. Louis School of Medicine

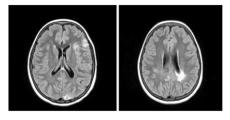
Case 1: 13 yo girl with urticaria

- Widespread urticaria ~2 months, with itching
- Initial CBC, ESR, CRP normal
- ANA 1:160
- Responded to anti-histamines and steroids
- 2 years later, recurrence of urticaria, now with oral ulcers
 - Positive lupus anti-coagulant & other abnormalities

Spadoni et al, Lupus, 2011.

Urticaria in Lupus

- Pediatric SLE:
 - Multicenter study of 852 pts in Brazil showed 1% incidence (10 pts) of chronic urticaria (*Ferriani et al, Int Arch Allergy Immunol, 2015*)
 Median duration 190 days
- Review of 12,778 patients with chronic urticaria in Israel (Confino-Cohen, JACI, 2012)
 - -0.4% had Systemic lupus erythematosus (SLE)
 - 15% had urticaria before a diagnosis of SLE
 - More common where hypothyroidism (~10%), hyperthyroidism (~2.6%), RA (1.5%), T1DM (1.3%), Sjogren syndrome (0.5%), Celiac (0.5%)



5

Washington University in St.Louis SCHOOL OF MEDICINE

Case 2: 3 year old with arthritis

- 3 yo girl with polyarticular arthritis involving knees and ankles
- · Continued disease for several years despite therapies (MTX, etanercept)
- Age 6: fevers, splenomegaly, AIHA, AIN
 - Concern for macrophage activation syndrome
 - Refractory cytopenias (rituximab, IVIG, cyclosporine, splenectomy)
- Age 9: autoimmune enteritis & CNS white matter lesions

Oz & Tesher, Pediatric Rheumatology, 17: 82 (2019)

Case 2: 3 year old with arthritis

- 3 yo girl with polyarticular arthritis involving knees and ankles
- Continued disease for several years despite therapies (MTX, etanercept)
- Age 6: fevers, splenomegaly, AIHA, AIN
 - Concern for MAS
 - Refractory cytopenias (rituximab, IVIG, cyclosporine, splenectomy)
- Age 9: autoimmune enteritis & CNS white matter lesions
- LRBA deficiency diagnosed (compound heterozygous variants in LRBA)
- Age 15: started abatacept (CTLA4-Ig) with improvement, sirolimus later added
- Age 18: hematopoietic stem cell transplant

7

Oz & Tesher, Pediatric Rheumatology, 17: 82 (2019)

Washington University in St.Louis SCHOOL OF MEDICINE

Rheumatology in the AI clinic

Outline

- Allergy/Immunology manifestations of common rheumatologic disease, with a focus on pediatric rheumatology
- Rheumatologic disease seen in Inborn Errors of Immunity (IEI)

Rheumatology in the AI clinic

Outline

- Allergy/Immunology manifestations of common rheumatologic disease, with a focus on pediatric rheumatology
- Rheumatologic disease seen in Inborn Errors of Immunity (IEI)

9

Washington University in St. Louis School of Medicine

ACR Rheumatology Image Library

Systemic Lupus Erythematosus (SLE)

- Prevalence in the US is 20-50/100,000
- Increased prevalence in Asian, black, and Hispanic individuals
- F>M, 7:1 15:1 overall
 For patients <9 yo, F:M is 4:3
- 20% of patients present <16 years of age
- Very rare before age 5 (look for an immune deficiency!)

ACR Rheumatology Image Library

Washington University in St. Louis School of Medicine

11

Clincial symptoms

Physical exam findings/symptoms:

- Malar rash
- Oral hard palate or nasal mucocutaneous ulcers
- Vasculitic rashes
- Photosensitivity
- Nonerosive arthritis
- Encephalopathy: szs, psychosis

Organ damage:

- Nephritis
- Pleuritis or pericarditis
- · Other organ involvement: liver, pancreas, lungs, GI

Laboratory studies:

- Cytopenias, immune mediated:
 - Hemolytic anemia; WBC <4k 2+ times; ALC <1.5k 2+ times; or Plt <100k.
- High-positive ANA
- Other positive immunoserology:
 - dsDNA; anti-Smith; Antiphospholipid ab

Washington University in St. Louis 199999691580078

Most common clinical features of childhood SLE

• Review of 256 Pediatric SLE pts in Toronto, 4.7:1 F:M from 1982-2005.

Symptom	At diagnosis %	Ever %
Arthritis	61	67
Malar rash	61	66
Headache	58	62
Nephritis	37	55
Fatigue	50	55

13

Hirak Kashington Jaiversity in St. Louis Tucker et Sala 000005, 2000 INE

Rashes in SLE

Small vessel vasculitis, non-blanching

14

Rashes in SLE

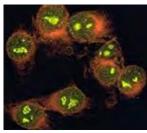
Discoid lupus

Photosensitive malar rash

ACR Rheumatology Image Library

Washington University in St. Louis School of Medicine

15


Rashes in SLE

Initial evaluation of suspected lupus in AI clinic

- · Laboratory studies:
 - CBC
 - ANA (if high \rightarrow dsDNA & other antibodies)
 - ESR (CRP rarely elevated)
 - Urinalysis for nephritis (protein/blood)
 - IgG typically elevated
- Other diagnostic tests:
 - Chest x-ray for chest pain/effusion
 - EKG/echocardiogram if there is concern for pericardial effusion

ANA

17

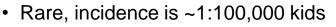
Washington University in St. Louis School of Medicine

ANA in healthy populations

• Low titer ANAs (<1:320) are common in healthy individuals and don't always require follow-up

ANA titer	699 children Canada ¹	125 adults International ²	304 adults Mexico ³
1:20- 1:40	17%	32%	35%
1:80	10%	13%	13%
1:160	9%	5%	3%
1:320	5%	3%	1%

 Patients with titer ≥ 1:160-1:320 warrant further evaluation



¹ Malleson et al, Arch Dis Child, 1997 ² Tan et al, Arthritis Rheum, 1997 ³ Marin et al, J Clin Rheumatol, 2009

Juvenile Dermatomyositis (JDM)

• Inflammatory disease of the skin, muscle, and blood vessels.

- Prior to corticosteroids 1/3 of children died
- Proximal muscle weakness
- · Characteristic rash:
 - Eyelids
 - Hands (gottron's papules)
 - Papules on extensor surfaces (elbows/knees)

Washington University in St. Louis School of Medicine

Clinical signs of JDM

World J Dermatol. May 2, 2015; 4(2): 80-94

ACR Rheumatology Image Library

n St.Louis

Initial Evaluation of JDM in the AI Clinic

- Muscle enzymes

 CK, aldolase, AST, ALT, LDH
- Acute phase reactants may or may not be elevated
- Consider imaging of affected muscle:
 - MRI
 - Ultrasound

http://www.neuro.wustl.edu/neuromuscular

Washington University in St. Louis School of Medicine

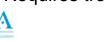
21

Raynaud Phenomenon

- Transient arterial vasospasm
- Can be 3-color phase:
 - Pallor \rightarrow Cyanosis \rightarrow Erythema/pain
- · Dark skin tends to have pallor
- Frequently sharply demarcated
- Often associated with cold

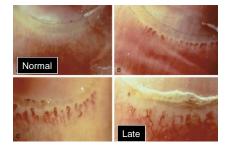
ACR Rheumatology Image Library

https://www.nhs.uk/conditions/raynauds/


Primary vs. Secondary

- Primary Raynaud is a benign exaggerated vasoconstriction response - 5-20% of women; 5-15% of men Secondary Raynaud: Associated with systemic disease Scleroderma Lupus Overlap syndromes Risk of ulceration
 - Requires treatment

23



Evaluation of Raynaud Phenomenon

- Primary:
 - Triggers apparent to patient
 - No systemic symptoms
 - Normal nailbed capillaries
 - No further testing necessary
- Secondary:
 - Other systemic symptoms
 - Can see dilated nailbed capillaries
 - Initial lab studies:
 - · CBC, ESR, renal function, ANA, antiphospholipid antibodies

Washington University in St.Louis SCHOOL OF MEDICINE

Other rheumatic skin disease: Erythema Nodosum

www.Blackandbrownskin.co.uk

- Post-strep
- · Inflammatory bowel disease
- Sarcoidosis
- · Idiopathic/infection-associated

Washington University in St. Louis School of Medicine

Other rheumatic skin disease: Anti-phospholipid antibody syndrome

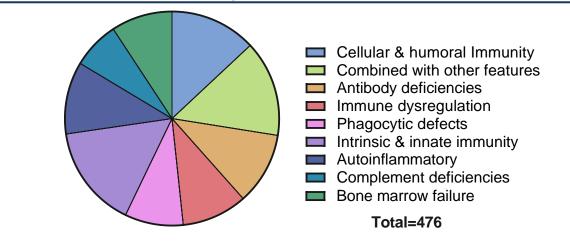
DIL: https://med.unc.edu/dil

PAA

Rheumatology in the AI clinic

Outline

- Al manifestations of common rheumatologic disease, with a focus on pediatric rheumatology
- Rheumatologic disease seen in Inborn Errors of Immunity (IEI)

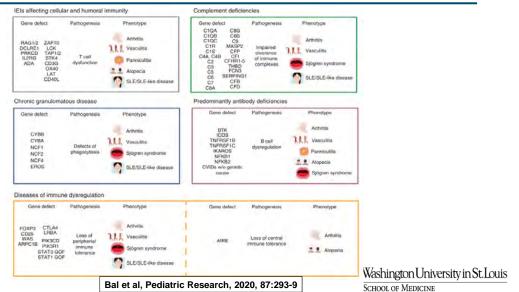

Washington University in St. Louis School of Medicine

Inborn Errors of Immunity (IEI)

- Inborn Errors of Immunity (IEI) are inherited disorder of the immune system, also known Primary immunodeficiencies (PID)
- There are more than 470+ single-gene inborn errors of immunity
 - Diverse range of clinical symptoms
 - Infectious susceptibility, **autoimmunity**, autoinflammation, lymphoproliferation, bone marrow failure, cancers

The spectrum of IEI

Data from: IUIS Reports: Tangye et al, J Clin Immunol, 2020; Tangye et al, J Clin Immunol 2021; and <u>https://iuis.org/committees/iei/</u> Washington University in St.Louis School of Medicine



29

Autoimmunity in IEI Uveitis Thyroid Lung disease **AI Hepatitis** Enteropathy IDDM & Endocrinopathies AI Colitis Cytopenias Skin Disease: Vasculitis, Psoriasis, Vitiligo, Granulomas Arthritis Systemic Disease Systemic lupus erythematosus Vasculitis Washington University in St.Louis Kitcharoensakkul & Cooper, Curr Opin Allergy Immunol, 2019 SCHOOL OF MEDICINE

Rheumatologic disease and IEI

31

Skin disease in IEI

Autoinflammatory diseases

- Often neonatal but can be adult-onset
- Urticaria, urticarial-like rashes
- Pustulosis
- Psoriasis
- Vasculopathy

NLRC4 Moghaddas et al, JACI, 2018.

Immune dysregulation syndromes

- Typically neonatal onset
- · Eczema, dermatitis
- · Psoriasis, scleroderma
- Pigmentation changes

STAT3 GOF Khoury et al, Clin Therap, 2017

IPEX syndrome Halabi-Tawil et al, 2008 BJD Washington University in St.Louis School of Medicine

Skin disease in IEI: Inflammatory lesions

Midline granulomas

Hypomorphic RAG1 variants De Ravin et al, Blood 2010

Pyoderma gangrenosum

Leukocyte adhesion deficiency

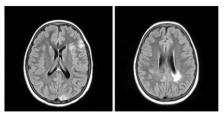
33

Washington University in St. Louis School of Medicine

Consider infectious causes

Vaccine-strain Rubella virus

Combined T/B Immunodeficiency Buchbinder et al, J Clin Immunol, 2019



Magnesium transporter deficiency X-linked Klinken et al, J of Clin Immunology, 2019.

Case: Arthritis and IEI

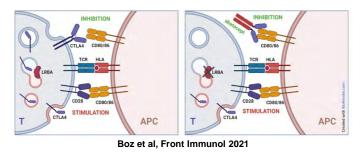
- 3 yo girl with polyarticular arthritis involving knees and ankles
- Continued disease for several years despite therapies (MTX, etanercept)
- Age 6: fevers, splenomegaly, AIHA, AIN
 - Concern for MAS
 - Refractory cytopenias (rituximab, IVIG, cyclosporine, splenectomy)
- · Age 9: autoimmune enteritis & CNS white matter lesions

Oz & Tesher, Pediatric Rheumatology, 17: 82 (2019) Washington University in St. Louis

35

Arthritis and IEI

- 3 yo girl with polyarticular arthritis involving knees and ankles
- Continued disease for several years despite therapies (MTX, etanercept)
- Age 6: fevers, splenomegaly, AIHA, AIN
 - Concern for MAS
 - Refractory cytopenias (rituximab, IVIG, cyclosporine, splenectomy)
- Age 9: autoimmune enteritis & CNS white matter lesions
- LRBA deficiency diagnosed (compound het variants in LRBA)
- Age 15: started abatacept with improvement, sirolimus later added
- Age 18: hematopoietic stem cell transplant




Oz & Tesher, Pediatric Rheumatology, 17: 82 (2019) Washington University in St. Louis

SCHOOL OF MEDICINE

Arthritis and IEI

- Typically polyarticular
- May respond to steroids and therapies for JIA
- Consider how diagnosis may alter therapy

Key points for treating rheumatologic disease in IEI

- Treat the rheumatologic disease:
 - May require immune 'suppression', which for monogenic disease is really more 'modulation', *e.g.*, JAK inhibitor in STAT3 GOF or STAT1 GOF, sirolimus in IPEX syndrome or P13K gain of function disease
- Your expertise can help rheumatologists feel comfortable with treating disease and choose the right agent
 - Should disease monitoring and/or prophylaxis change?
 - Drugs to avoid anti-TNF-alpha in patients with infectious susceptibility

Summary

- Rheumatologic disease can present to the AI clinic, often due to skin disease
- Patients with inborn errors of immunity can present with a wide range of rheumatologic disease, the AI physician can help guide immune modulation
- Early recognition and multi-disciplinary care is important for these complex patients

39

PENNSYLVANIA ALLERGY & ASTHMA ASSOCIATION

73RD OPMA ANNUAL MEETING

Patient Education in the Office

Presented by: David Stukus, MD

Sunday, June 26, 2022 8:30 a.m. – 9:15 a.m.

Patient Education in the Office

David Stukus, MD, FAAAAI, FACAAI, FAAP

Professor of Clinical Pediatrics Director, Food Allergy Treatment Center Division of Allergy and Immunology Nationwide Children's Hospital Columbus, Ohio

@AllergyKidsDoc

1

Disclosures

- · Social Media Medical Editor American Academy of Allergy, Asthma and Immunology
- · Associate Editor Annals of Allergy, Asthma and Immunology
- · Consultant Before Brands, Integrity CE, Kaleo, Novartis
- Honoraria ACAAI, AAP, AAAAI
- Royalties Springer Publishing
- Non-financial:
 - Member Joint Task Force on Practice Parameters
 - · Member Board of Regents, ACAAI

Objectives

- Appreciate the various ways in which patients are influenced by outside sources of information
- Understand the origins surrounding misconceptions specific to allergic conditions
- Anticipate confusion and misinformation from patients and actively address this during clinical encounters

Did You Ever Think THIS Would Cause Such an Uproar?

COVID-19: An 'Infodemic'

https://theconversation.com/controls-to-manage-fake-news-in-africa-are-affecting-freedom-of-expression-137808

5

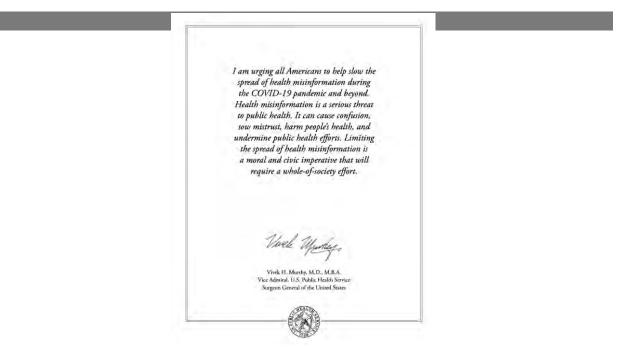
Mis-in-fer-mey-shuhn

noun

1. false information that is spread, regardless of whether there is intent to mislead

Dictionary.com 'Word of the Year'

https://apnews.com/article/entertainment-north-america-ap-top-news-religion-fake-news-e4b3b7b395644d019d1a0a0ed5868b10



The U.S. Surgeon General's Advisory on Building a Healthy Information Environment

2021

https://www.hhs.gov/sites/default/files/surgeon-general-misinformation-advisory.pdf

7

https://www.hhs.gov/sites/default/files/surgeon-general-misinformation-advisory.pdf

https://medium.com/@viriatovb/what-is-the-cnn-effect-and-how-relevant-is-it-today-a78b15b18f05

"THAT'S ODD: MY FACEBOOK FRIENDS WHO WERE CONSTITUTIONAL SCHOLARS JUST A MONTH AGO ARE NOW INFECTIOUS DISEASE EXPERTS "

11

Initial Thoughts...

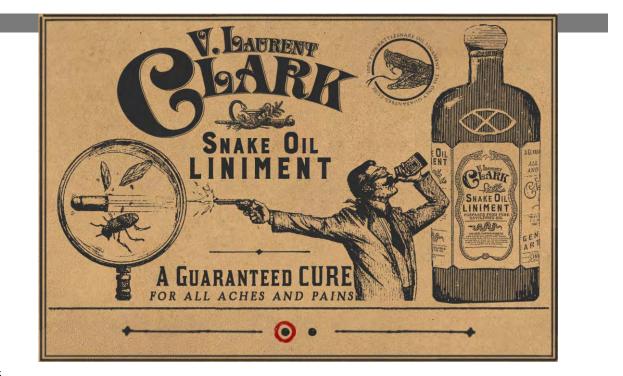
• Allergist/Immunologists serve a very special role in the lives of our patients Long term relationships Common areas of

WE Have an Advantage

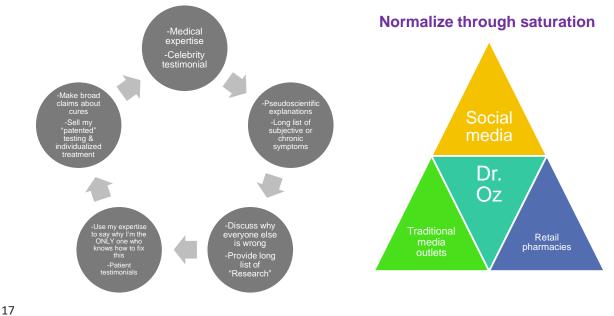
- Can ask questions
- Monitor body language
- Dive into nuance surrounding complex topics
- Most importantly...we need to:
 - Listen
 - Give our time
 - Show empathy
 - Be non-judgmental
 - Be available for follow up discussion

There MUST Be Something Wrong...

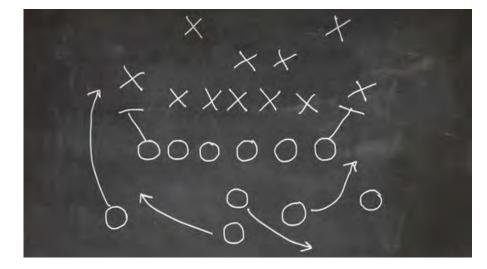
13

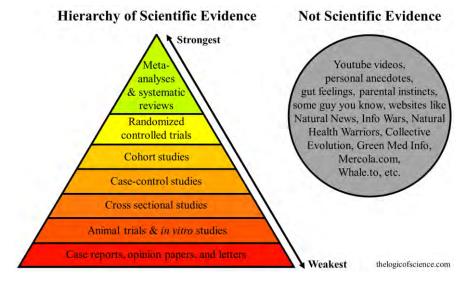

J Q

X


Google

- Q why am i
- why am i so tired
- Q why am i always tired
- Q why am i always cold
- q why am i dizzy
- o why am i so gassy
- Q why am i peeing so much
- Q why am i always hungry
- Q why am i not losing weight
- Q why am i so thirsty
- why am i so tired all the time

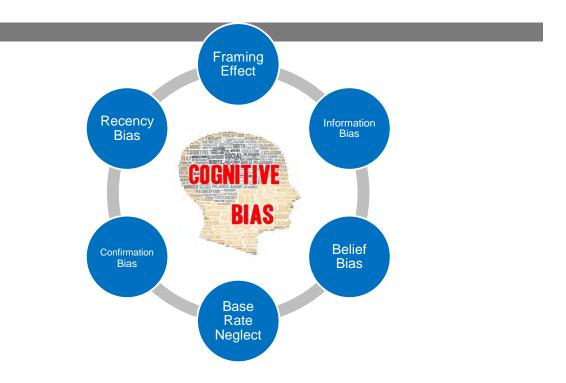

15

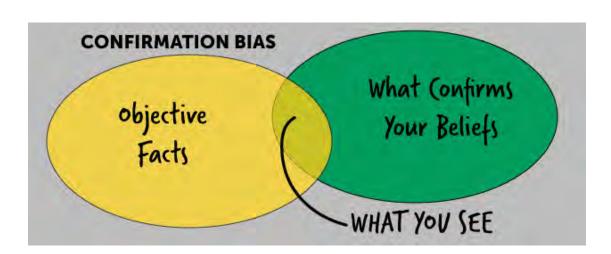

If I Lacked a Conscience...

The Best Defense...is a Good Offense

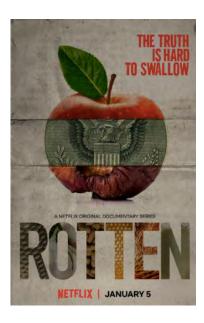
What Constitutes Evidence?

19


Quality Matters


Google	asthma	× 🌢 d
	Q All 🔄 Images 🕞 Videos 🗉 News ⊘ Shopping 🗄 More	Tools
	About 12,100,000 results (0.29 seconds)	

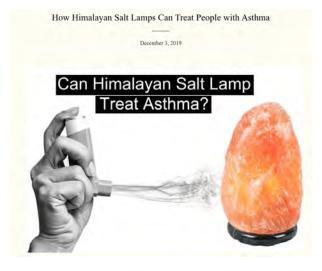
1. Kaul V, et al. J Asthma. 2022 Feb;59(2):325-332.


- 2. Wu AC, et al. J Allergy Clin Immunol Pract. 2022 Feb 22:S2213-2198(22)00142-8.
- 3. Kornafeld A, Gonzalez-Estrada A, Dimov V. 'Googling' anaphylaxis. Curr Opin Allergy Clin Immunol. 2019 Oct;19(5):432-438.

5/5/2022

2 at Takeout Restaurant in U.K. Are Convicted of Manslaughter in Nut Allergy Death

By Palko Karasz • Oct. 27, 2018



https://www.nytimes.com/2018/10/27/world/europe/uk-takeaway-allergy-death.html

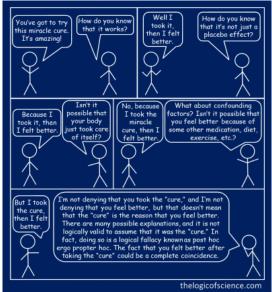
25

Pseudoscience Bingo!!!

Inflammation	Free radicals	Detox	Celebrity endorsement	Energy	
Cleanse	Fatigue	Crystals	Naturopathic	All natural	
Chemical free	Ancient Wisdom	FREE SPACE	Instinctively know best	Organic	
Conspiracy	Molecules	Toxins	Cure	'Western' Medicine	
Pharma shills	"Science doesn't know everything"	Government/ mind control	Miracle	Magnetic	

...are actually rock crystals... ...release negative ions into the air... ...we are surrounded by ions, some from outer space... ...some people claim to feel refreshed after a storm...probably due to the negative ions emitted...

The main culprit of asthma lies in the water vapors that dance around and are filled with allergens...and viruses. ...Himalayan salt lamps attract water molecules and cause them to evaporate, eliminating the air of any allergen or pollutant.


- Improves blood flow/circulation
 - Increases energy levels
 - Helps us sleep better

https://ambientsaltlamp.com/blogs/news/how-himalayan-salt-lamps-can-treat-people-with-asthma

27

The Plural of Anecdote...is NOT Data

- Logical fallacy
 - *Post hoc ergo propter hoc* = "after this, therefore because of this"
 - X happened before Y...therefore, X caused Y
- True representation is lacking
 - · How many others tried and failed?
- No control → placebo effect
- Small sample size
- Not collected systematically

Lack of Context From Celebrities and Influencers

It only took me 49 years to realize I'm allergic to almost everything. 🥹

markwahlberg

view all 22,706 comme

https://people.com/health/mark-wahlberg-allergic-to-almost-everything/

APRIL 15, 2019, 12:21 AM ET

Bethenny Frankel's Fish Allergy Is So Severe, This Is What Happened When a Friend Who Ate Lox Kissed Her Face

The Real Housewives of New York City mogul Bethenny Frankel's fish allergy has almost killed her. BY ALESANDRA DUBIN

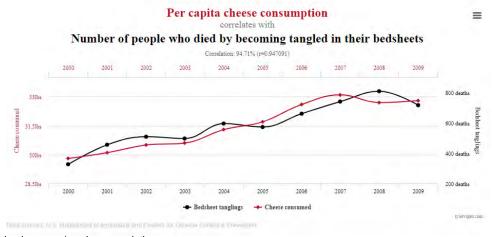
https://www.bravotv.com/the-real-housewives-of-new-york-city/the-feast/bethenny-frankel-fish-allergy-reaction-instagram-pictures

5 Signs A Hidden Food Sensitivity Is Sabotaging Your Health

23 Signs Of A Hidden Food Intolerance

31

A 'Shark Tank'-funded test for food sensitivity is medically dubious, experts say


By ALLISON BOND / JANUARY 23, 2018

Julia Cheek, CEO of EverlyWell, on a No

https://www.statnews.com/2018/01/23/everlywell-food-sensitivity-test/

Correlation ⊑ ⊂ Causation

https://www.tylervigen.com/spurious-correlations

33

The Vaccine Reaction

An enlightened conversation about vaccination, health and autonomy

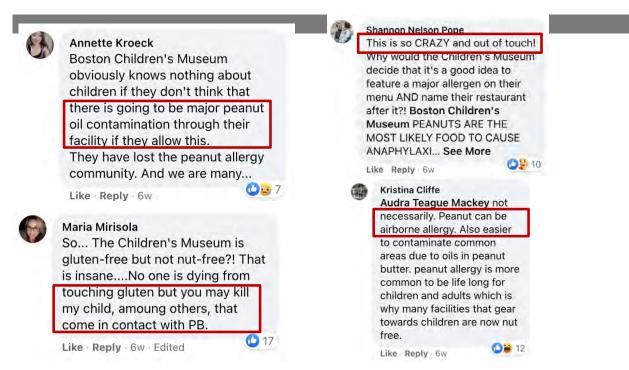
Merck's Peanut Oil Adjuvant

https://thevaccinereaction.org/2015/11/mercks-peanut-oil-adjuvant/

1 7 7 7 8

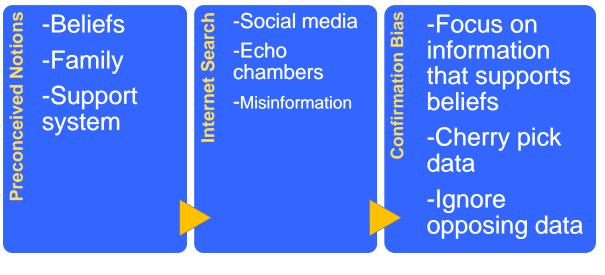
https://www.deadlyfoodallergies.com/#why-food-allergies-matter

NEWS


PB&J Cafe next to Boston Children's Museum sparks outrage by allergy-conscious parents

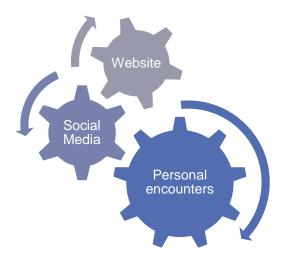
One concerned parent said the fear of contamination from kids' fingers would keep her away from the museum.

For some people with a peanut allergy, even tiny amounts of peanuts can cause anaphylaxis, a serious reaction that can even be life threatening. Maren Caruso / Getty Images


https://www.today.com/food/pb-j-cafe-next-boston-children-s-museum-sparks-outrage-t203515

"Research" in 2022

41


What's the Harm?

People don't know who to trust anymore

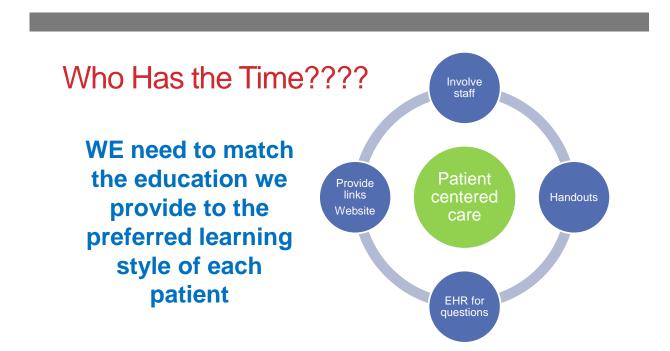
Practical Tools You Can Start Using Today

Multipronged Approach

What Health Professionals Can Do

- Proactively engage with patients and the public
- Use technology and media platforms to share evidence based information
- Partner with community groups and local organizations

https://www.hhs.gov/sites/default/files/surgeon-general-misinformation-advisory.pdf



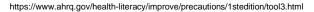
It's Time To Reclaim Our Expertise and Role as Educators

- This requires
 - Time
 - Effort
 - Dedication
 - Respect
- Let's become better
 - Listeners
 - Communicators

Steps YOU Can Take Now

- Try to 'think like a patient' to understand how and where they are receiving information
- Discuss internet searches, social media, and misinformation with patients
- Increase your awareness regarding the amount and types of misinformation surrounding various conditions
- Get involved!!!

Many of Our Patients Have Low Health Literacy


• "The degree to which individuals have the capacity to obtain, process, and understand basic health information needed to make appropriate health decisions."

https://www.healthypeople.gov/2020/topics-objectives/topic/social-determinants-health/interventions-resources/health-literacy

Red Flags for Low Literacy

- ✓ Frequently missed appointments
- ✓ Incomplete registration forms
- ✓ Non-compliance with medication
- Unable to name medications, explain purpose or dosing
- ✓ Identifies pills by looking at them, not reading label
- ✓ Unable to give coherent, sequential history
- ✓ Ask fewer questions
- ✓ Lack of follow-through on tests or referrals

Keep it Simple...But Don't Dumb it Down

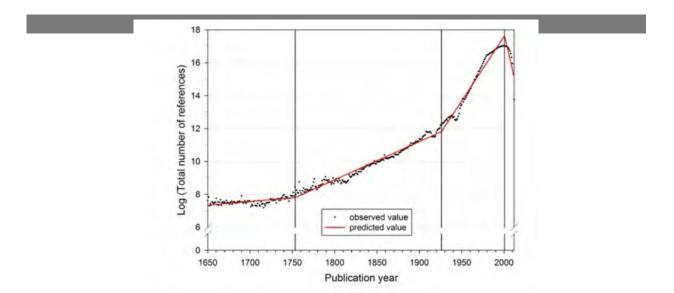


Figure 2. Segmented growth of the annual number of cited references from 1650 to 2012 (citing publications from 1980 to 2012)

Bornmann L, et al. J Assoc Info Sci Tech: arxiv.org/abs/1402.4578

#ScienceIsHard

Pride is concerned with who is right.

Humility is concerned, with what is right. -Ears Tark Benson

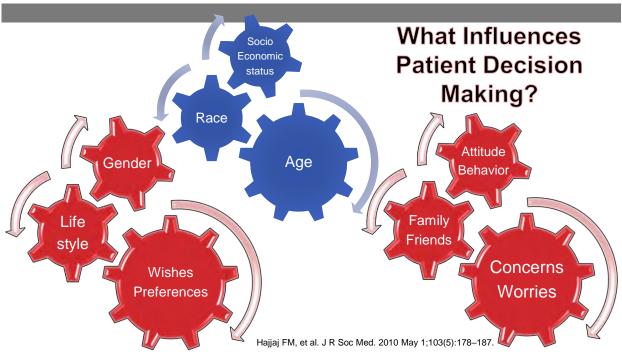
We Can't Reach Everyone

Nurse uses key, hairpin to try to prove she is

https://www.kbtx.com/2021/06/10/nurse-uses-key-hairpin-try-prove-she-is-magnetic-vaccine-during-ohio-househearing-video/ Just wanted you to know that your excellent simplified share of info on the delta variant finally convinced my hubby to get his vaccine! I just scheduled jt for today- he's been SO hesitant...and I haven't wanted to be the nagging wife 😀 🕵

The Number 1 Thing YOU Can Do to Help Your Patients...

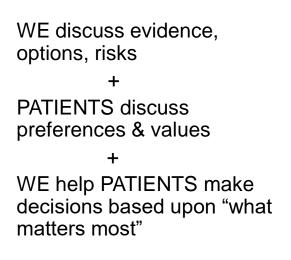
Google

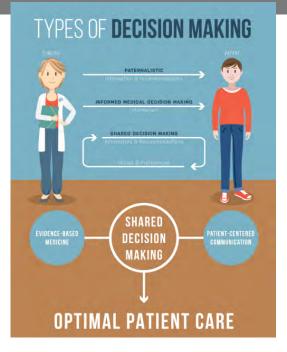

Q why am i

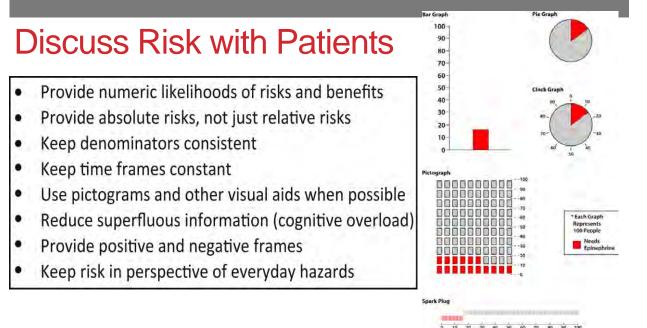
- why am i so tired
- Q why am i always tired
- o, why am i always cold
- Q why am i dizzy
- o why am i so gassy
- o, why am i peeing so much
- Q why am i always hungry
- Q why am i not losing weight
- why am i so thirsty
- why am i so tired all the time

Learn, Anticipate, Address

- Provide anticipatory guidance at every visit
- Ask permission to discuss
- Make it a normal part of every encounter...especially the hard topics
- If you don't understand how your patients are being influenced, you won't be able to help them



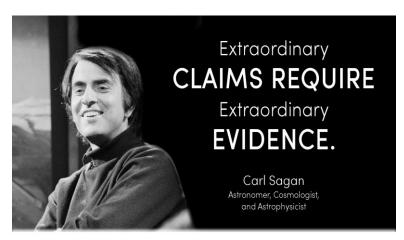

Word Choices Matter



59

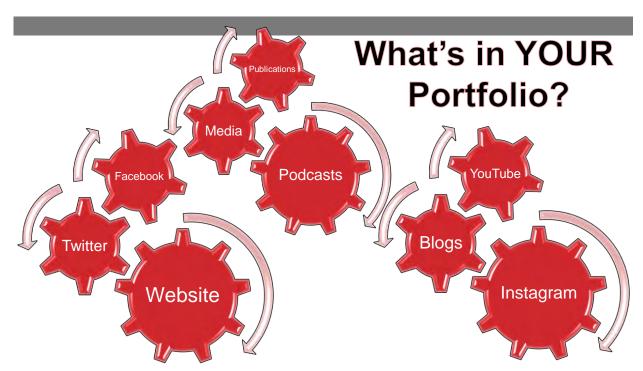
Shared Decision Making

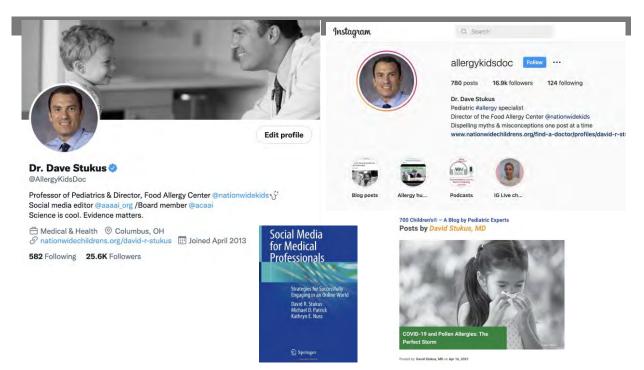
Shaker M, et al. Ann Allergy Asthma Immunol. 2020;125(3):252-261.


How should you talk to friends and relatives who believe conspiracy theories?

By Marianna Spring Specialist disinformation reporter © 21 December 2020

- Keep calm
- Don't dismiss
- Encourage critical thinking
- Ask questions
- Don't expect immediate results
- You can't reach everyone


https://www.bbc.com/news/blogs-trending-55350794


- Encourage questions
- · Listen to replies
- Offer logical explanations
- Admit when you don't know the answer
- Make yourself available for follow up questions

Addressing Misinformation Beyond Your Office Doors

67

We Are All Living in the Matrix

The metaverse is the next evolution of social connection. Our company's vision is to help bring the metaverse to life, so we are changing our name to reflect our commitment to this future.

Augmented reality

Through photo and video, AR lets you enhance shared experiences with playful virtual effects at swipe of a screen, letting you express yourself with the people who matter most.

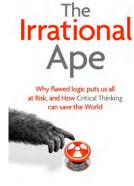
A future made by all of us

The metaverse will be a collective project that goes beyond a single company. It will be created by people all over the world, and open to everyone.

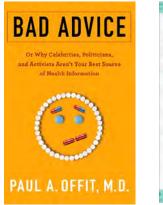
https://about.facebook.com/meta/

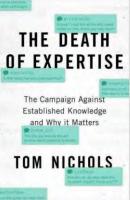
69

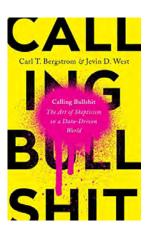
This is What Keeps Me Up at Night



Steps YOU Can Take Now


- Try to 'think like a patient' to understand how and where they are receiving information
- Proactively ask patients about common areas of misinformation
- Provide resources and ENCOURAGE open communication




Thank You

DAVID ROBERT GRIMES

PENNSYLVANIA ALLERGY & ASTHMA ASSOCIATION

73RD PAAA ANNUAL MEETING

Immune Dysregulation

Presented by: Megan Cooper, MD, PhD

Sunday, June 26, 2022 9:30 a.m. - 10:15 a.m.

Immune Dysregulation

Cooper_m@wustl.edu

Washington University in St.Louis

SCHOOL OF MEDICINE

Disclosures

- Dr. Cooper has the following disclosures to declare:
- Consultant: Enzyvant
- No products related to this disclosure will be discussed
- All therapies discussed are off-label

Washington University in St. Louis School of Medicine

Learning Objectives

- Identify signs of immune dysregulation in patients seen in the allergy/immunology clinic
- Demonstrate knowledge of genetic testing and interpretation for immune dysregulation syndromes
- Describe potential therapies for patients with immune dysregulation

3

Washington University in St. Louis School of Medicine

Outline

- Case-based discussion of the spectrum of and treatment for immune dysregulation disorders
- Expanding spectrum of immune dysregulation in Primary Immunodeficiencies
- Genetic diagnosis of immune dysregulation

Washington University in St. Louis SCHOOL OF MEDICINE

Outline

- Case-based discussion of the spectrum of and treatment for immune dysregulation disorders
- Expanding spectrum of immune dysregulation in Primary Immunodeficiencies
- Genetic diagnosis of immune dysregulation

5

Washington University in St. Louis School of Medicine

Case: 3 yo with anemia & infections

- 3 yo boy with refractory autoimmune hemolytic anemia (AIHA)
- Infection history:
 + viral URIs and sinusitis
- Otherwise well grown and developing normally.

Case: 3 yo with anemia & infections

- 3 yo boy with refractory autoimmune hemolytic anemia (AIHA)
- Infection history:
 + viral URIs and sinusitis
- Otherwise well grown and developing normally.

- Immune evaluation:
 - Normal CBC and IgG
 - Normal T cell numbers
 - Elevated B cells
 - Non-protective responses to tetanus and streptococcus pneumoniae (Prevnar) vaccination
 - Absent memory B cells

Washington University in St.Louis SCHOOL OF MEDICINE

7

Diagnosis: 3 yo with AIHA & infections

- Clinical exome sequencing:
 - Heterozygous de novo variant in:
 - *PIK3CD* pE1021K
- Leads to gain-of-function (GOF) in p110 δ subunit of PI3K with increased mTOR activity
- Autosomal dominant primary immune dysregulation disorder

Lymphoid hyperplasia on bronchoscopy

Angulo et al Science 2013; Lucas et al Nat Immunol 2014; Kracker et al Washington University in St.Louis JACI 2014; Hartman et al, J Clin Immunol 2015; Coulter et al JACI 2017 School of Medicine

Diagnosis: 3 yo with AIHA & infections

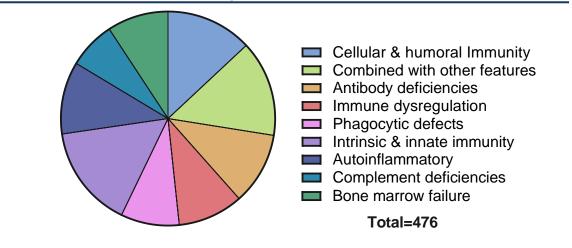
- Clinical exome sequencing:
 - Heterozygous de novo variant in:
 - *PIK3CD* pE1021K
- Leads to gain-of-function (GOF) in p110δ subunit of PI3K with increased mTOR activity
- Autosomal dominant primary immune dysregulation disorder
- Treatment: mTOR inhibitor (sirolimus) for modulation of the immune response

Lymphoid hyperplasia on bronchoscopy

9

Angulo et al Science 2013; Lucas et al Nat Immunol 2014; Kracker et al, Washington University in St.Louis JACI 2014; Hartman et al, J Clin Immunol 2015; Coulter et al JACI 2017 School of Medicine

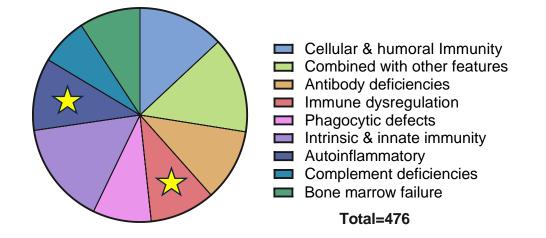
Inborn Errors of Immunity (IEI)


- Inborn Errors of Immunity (IEI) are inherited disorder of the immune system, also known Primary immunodeficiencies (PID)
- There are more than 470+ single-gene inborn errors of immunity
 - Diverse range of clinical symptoms
 - Infectious susceptibility, autoimmunity, autoinflammation, lymphoproliferation, bone marrow failure, cancers

Genomic discovery advances our understanding of the immune system and can provide targeted therapies for

patients

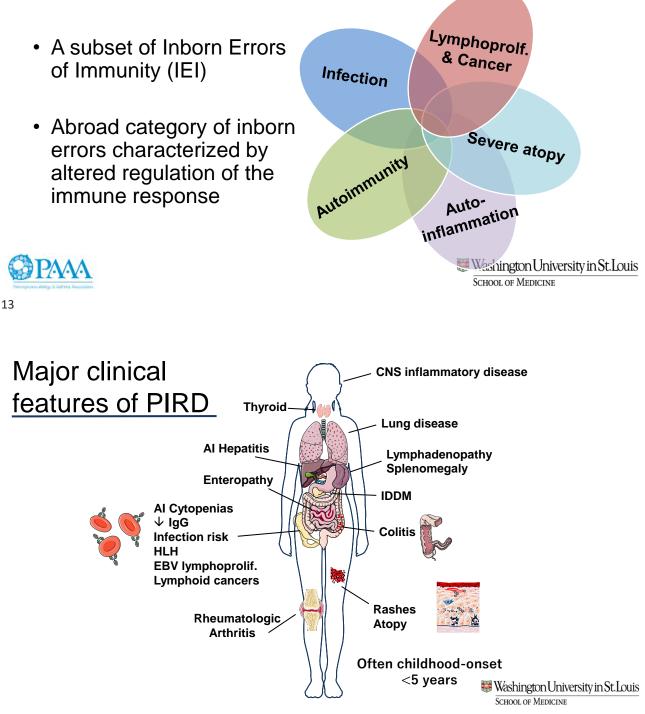
The Spectrum of IEI



Data from: IUIS Reports: Tangye et al, J Clin Immunol, 2020; Tangye et al, J Clin Immunol 2021; and <u>https://iuis.org/committees/iei/</u> Washington University in St.Louis School of Medicine

11

The Spectrum of IEI



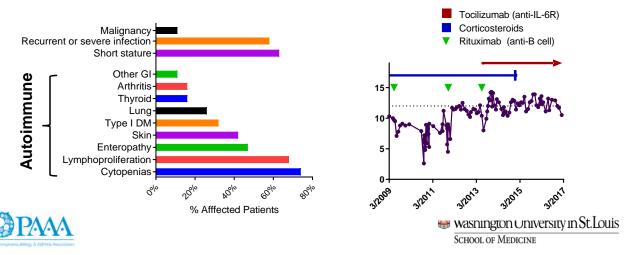
Data from: IUIS Reports: Tangye et al, J Clin Immunol, 2020; Tangye et al, J Clin Immunol 2021; and https://iuis.org/committees/iei/WashingtonUniversity

Washington University in St. Louis School of Medicine

Primary Immune Regulatory Disorder (PIRD)

Case 2: 4 year old with autoimmune hepatitis and poly-autoimmunity

- Autoimmune hepatitis
- Severe autoimmune hemolytic anemia (Hgb 2.6)
- Overlap syndrome scleroderma and arthritis
- Short stature (<2 SD)
- · No significant family history
- No infections


Регодити Алириа Алириания

15

Patient photos used with permission School of Medicine

Case 2 Dx: 4yo boy with AI hepatitis, anemia, arthritis

• STAT3 gain-of-function syndrome: early-onset poly-autoimmunity & infections with prominent cytopenias and enteropathy

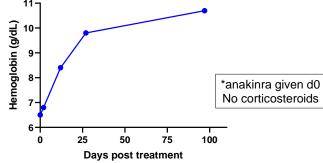
Case 3: 20 mo with anemia & rash

- 20 mo male infant with developmental delays presents with a year of intermittent fevers, rash, and anemia with new sternal and ankle pain
- Mother with history of recurrent oral and genital ulcers
- Exam: nodular skin rash
- CBC:
 - Hgb 6.5 g/dL (11.5-13.5)
 - Plt 483 cells/µL (150-400)
 - WBC 8.6 cells/µL (6-17.5)
- ESR 77 (ref <20)
- CRP 69 (ref <10)

17

Washington University in St. Louis SCHOOL OF MEDICINE

Inpatient evaluation


- Immunology/Rheumatology:
 - IgG 1581, IgA 185.5, IgM 111.9
 - Normal immune subsets
 - Serum cytokines: elevated
 TNF 21.5 [<10], IL-6 258 [<5], MCP-1 769
 [<198], IL-1β 22.1 [<20], sIL2Rα >4000 [<9]
 - MRI of foot and chest osteomyelitis
- Neurology:
 - Differential including Aicardi-Goutières
 - Brain MRI normal; EEG normal; LP normal
- Hematology:
 - Coombs negative \rightarrow anemia of chronic disease
 - Low concern for malignancy

- · Orthopedics:
 - Bone biopsy non-specific inflammation, no infection
- Infectious diseases:
 - Extensive evaluation negative for infection
- Dermatology:
 - Skin biopsy Neutrophilic panniculitis
- Genetic testing \rightarrow 2-4 weeks

Case 3 Dx: 1yo with anemia & rash

 Started anakinra (2mg/kg) → rapid improvement of rash and anemia.

 Genetic testing demonstrated a novel heterozygous truncation variant in **TNFAIP3 (A20)** causing haploinsufficiency of A20 (anti-TNF-a would have been another therapy to try given this) Washington University in St. Louis SCHOOL OF MEDICINE

Case 4: 5yo girl with autoimmune hepatitis

- 5 year old girl with 2 months of abdominal pain and weight loss
- Liver biopsy \rightarrow autoimmune hepatitis
- Low calcium \rightarrow hypoparathyroidism
- No family history of autoimmune disease
- Normal growth & development
- No infections

20

Patient photo provided by family and used with permission SCHOOL OF MEDICINE

19

Case 4 Dx: 5yo girl with AI hepatitis

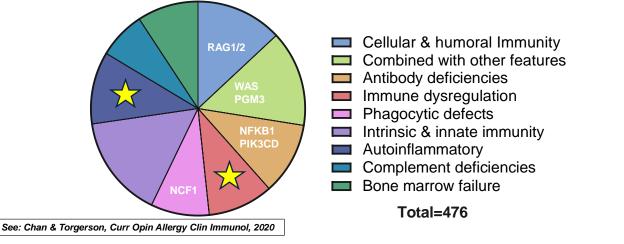
- Genetic testing demonstrated homozygous inherited pathogenic variants in AIRE, abnormal thymic selection of T cells
 - Autoimmune polyendocrinopathy, candidiasis & ectodermal dysplasia = APECED (or APS1).
- Change in <u>clinical care including monitoring and treatment</u>.

21

Patient photos provided by family and used with permission

Mycophenolate mofetil Rituximab Discontinue steroids

Washington University in St. Louis School of Medicine


Outline

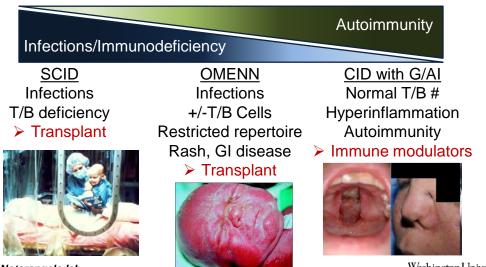
- Case-based discussion of the spectrum of and treatment for immune dysregulation disorders
- Expanding spectrum of immune dysregulation in Primary Immunodeficiencies
- Genetic diagnosis of immune dysregulation

Expanding spectrum of PIRD

Data from: IUIS Reports: Tangye et al, J Clin Immunol, 2020; Tangye et al, J Clin Immunol 2021; and <u>https://iuis.org/committees/iei/</u> Washington University in St.Louis School of Medicine

23

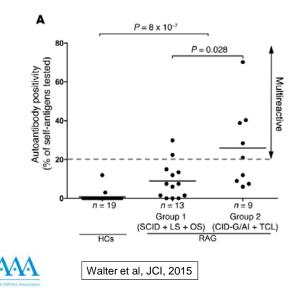
'Immunodeficienies' with immune dysregulation


	Disease	Al Cyto-	Skin	Enter-		Endocrin-		
Gene	name	penias	disease	opathy	Lung	opathy	Arthritis	Other
Severe Comb	ined Immunod	eficiency						
RAG1, RAG2	Omenn	++	++++	+++	-	+	-	++
PNP	SCID	+++	-	-	-	-	-	-
Combined Im	mune Deficien	cies						
CD40L	XL HIgM	+++	++	++	-	++	++	++
ICOS	ICOS	+	++	+++	+	-	++	++
PI3KCD,	APDS	++	+	++	+++	++	++	++
PI3KR1								
22q11.2	DiGeorge	++	++	+	-	++	+	+
WAS	WAS	+++	++++	+	-	-	++	++
STIM1	STIM1 def	++++	-	+	-	-	-	-
STK4	MST1 def	+++	-	-	-	-	-	-

SCID = Severe combined immunodeficiency, defect in T cell numbers and/or function **CID** = Combined immune deficiency, defects in T and B cell function and/or development

Kitcharoensakkul & Cooper, Textbook of Autoimmunity, 2020

Washington University in St. Louis SCHOOL OF MEDICINE


RAG Deficiency

Notarangelo lab CID with G/AI = combined immunodeficiency with granulomatosus and autoimmunity

Washington University in St. Louis School of Medicine

Autoimmunity in RAG deficiency

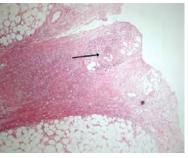
- 22 patients with RAGdeficiency
- High rate of autoantibodies in the serum of patients
- Multiple anti-cytokine
 antibodies

Washington University in St. Louis School of Medicine

26

25

Autoimmunity with RAG1/2 deficiency


Al cytopenias: anemia, thrombocytopenia, neutropenia
 – 10/13 CID patients

Case reports:

- Granulomatous disease (GPA mimic)
- Crohn's disease
- · Vasculitis, lupus
- · Juvenile arthritis
- · Myasthenia Gravis
- Psoriasis
- Vitiligo

27

Hypomorphic RAG1 defect in a child presented with pulmonary hemorrhage and digital necrosis. Taskiran et al, Clin Immunol, 2018.

Washington University in St.Louis SCHOOL OF MEDICINE

Antibody deficiencies & immune dysregulation

Gene Predominant	Disease name ly Antibody De	Al Cyto- penias ficiencies	Skin disease	Enter- opathy	Lung	Endocrin- opathy	Arthritis	Other
ВТК	XLA	++	+	++	-	-	++	-
Multiple/ unknown	CVID	++	++	++	++	++	++	++

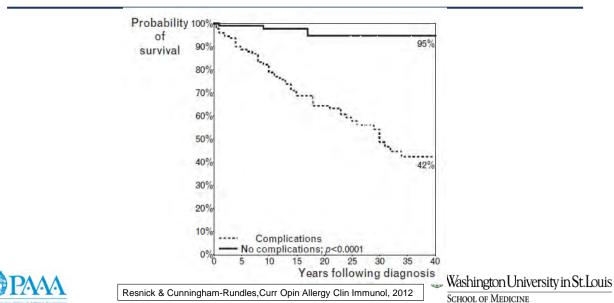
XLA= X linked agammaglobulinemia, absence of B cells

CVID= Common variable immunodeficiency, antibody deficiency characterized by low immunoglobulin and abnormal response to vaccination

Kitcharoensakkul & Cooper, Textbook of Autoimmunity, 2020

Washington University in St. Louis SCHOOL OF MEDICINE

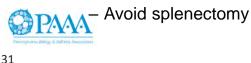
CVID


Table 2. Selected complications from a large cohort (n=473) of common variable immune deficiency patients followed at one medical center over four decades

Associated condition	Number (n = 473)	Percentage of cohort (%)
Infections only (no complications)	151	31.9
Chronic lung disease (functional/structural)	135	28.5
Bronchiectasis	53	11.2
Autoimmunity	134	28.6
Immune thrombocytopenic purpura (ITP)	67	14.2
Autoimmune hemolytic anemia (AIHA)	33	7
Gastrointestinal disease	73	15.4
Malabsorption	28	5.9
Inflammatory Bowel Disease (Crohn's disease, ulcerative colitis, ulcerative proctitis)	20	4.2
Liver disease/hepatitis	43	9.1
Granulomatous disease	46	9.7
Lymphoma	39	8.2
Cancer	33	7
Splenectomy	39	8.2

Resnick & Cunningham-Rundles, Curr Opin Allergy Clin Immunol, 2012

Washington University in St.Louis

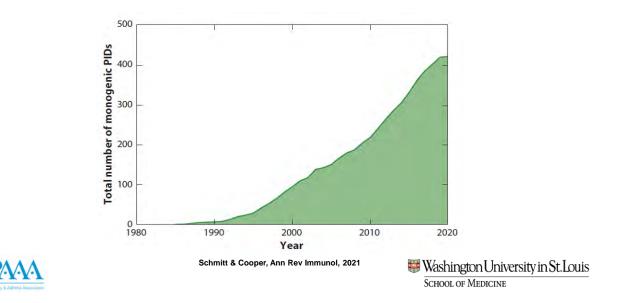

SCHOOL OF MEDICINE

CVID

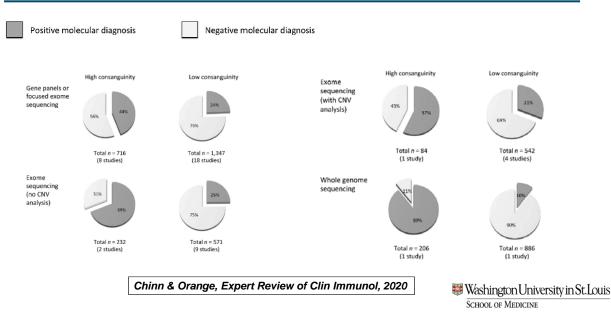
Cytopenias in CVID

- Autoimmune cytopenias can precede the diagnosis of CVID
- These patients are more likely to have other noninfectious complications (OR 2.9, Feuille et al, J Clin Immunol, 2018)
 - Enteropathy, interstitial lung disease, liver, lymphoproliferation, granulomatous disease)
 - May reflect an increased rate of monogenic (or digenic) cause for their CVID
- Treatments:
 - Can consider B cell depletion therapy for refractory cytopenias

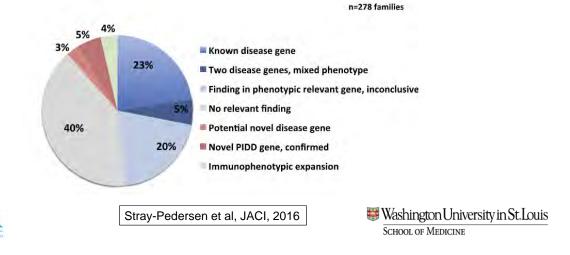
Washington University in St.Louis SCHOOL OF MEDICINE

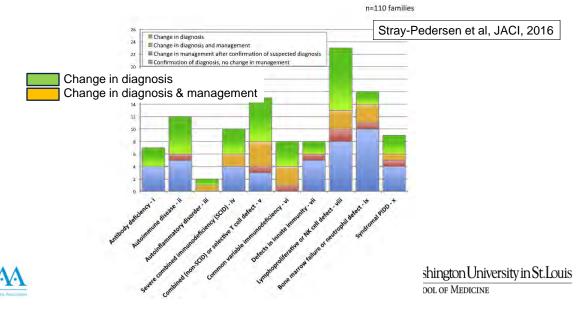

Outline

- Case-based discussion of the spectrum of and treatment for immune dysregulation disorders
- Expanding spectrum of immune dysregulation in Primary Immunodeficiencies
- Genetic diagnosis of immune dysregulation



Genetic discovery of Inborn Errors of Immunity


Molecular diagnosis rates for IEI


33

Molecular diagnosis rates of IEI

- · Exome sequencing of 278 patients/families with IEI
- A genetic diagnosis was identified in ~40%

Molecular diagnosis: changes in diagnosis and treatment

35

What genetic test to order?

- Single gene testing:
 - Do you know with certainty what they have? Strong family history
- Panel-based testing:
 - Readily available, 2-3 week turnaround, test for ~500 genes associated with known disease
 - Cost: frequently low out-of-pocket or free testing through several programs
- Exome or genome sequencing:
 - Has the patient been through a diagnostic odyssey or does their phenotype not fit a clear syndrome?
 - Consider referral to genetic counselor, there may be secondary findings
 - Exome doesn't pick up everything
 - Hard to sequence by exome: NCF1, NEMO, TBX1...
 - intronic variants ATM, BTK, JAK3, LRBA...
 - UTR and poly A variants IL2RG, FOXP3, WAS...
- Chromosomal microarray:
 - Detect large insertions deletions, e.g., Chr22q11.2 microdeletion syndrome

37

Washington University in St. Louis SCHOOL OF MEDICINE

Summary

- Inborn errors of immunity can present predominantly with immune dysregulation rather than infectious susceptibility
- Variation in genetic changes can lead to immune dysregulation in diseases typically associated with severe immunodeficiency
- Genetic testing can change diagnosis and treatment of patients

Washington University in St. Louis SCHOOL OF MEDICINE

Oral Food Challenges in Infants and Toddlers

Presented by: David Stukus, MD

Sunday, June 26, 2022 10:15 a.m. – 11:00 a.m.

Oral Food Challenges in Infants and Toddlers

David Stukus, MD, FAAAAI, FACAAI, FAAP

Professor of Clinical Pediatrics Director, Food Allergy Treatment Center Division of Allergy and Immunology Nationwide Children's Hospital Columbus, Ohio

COLLEGE OF MEDICINE

@AllergyKidsDoc

Disclosures

- Social Media Medical Editor American Academy of Allergy, Asthma and Immunology
- Associate Editor Annals of Allergy, Asthma and Immunology
- Consultant Before Brands, Integrity CE, Kaleo, Novartis
- Honoraria ACAAI, AAP, AAAAI
- Royalties Springer Publishing
- Non-financial:
 - Member Joint Task Force on Practice Parameters
 - Member Board of Regents, ACAAI

2

1

Objectives

- Identify optimal patients for oral food challenges
- Interpret food allergy test results in the proper context
- Incorporate information learned from oral food challenges into standard practice

Here is THE Reference

AAAAI Work Group Report

Conducting an Oral Food Challenge: An Update to the 2009 Adverse Reactions to Foods Committee Work Group Report

J. Andrew Bird, MD^{*}, Stephanie Leonard, MD^{*,e}, Marion Groetch, MS, RDN⁴, Amal Assa^{*}ad, MD^{*}, Antonella Cianferoni, MD, PhD^{*}, April Clark, RDN, LD⁹, Maria Crain, APRN, CPNP⁸, Tracy Fausnight, MD⁵, David Fleischer, MD^{4,1}, Todd Green, MD^{*}, Matthew Greenhawt, MD.⁴⁰, MSA, MSC⁴, Linda Herbert, PhD^{*,m}, Bruce J. Lanser, MD⁻, Irene Mikhail, MD⁹, Shatzad Mustafa, MD^{*,n}, Sally Noone, RN⁴, Christopher Parrish, MD⁶, Pooja Varshney, MD^{*,e}, Berber Vlieg-Boerstra, RD, PhD^{*,m}, Michael C, Young, MD^{*}, Scott Sicherer, MD⁴, and Anna Nowak-Wegrzyn, MD, PhD^{**}, Dallas and Austin, Texas: San Diego, Calif: New York and Rochester, NY: Cincinnati and Columbus, Ohio: Philadelphia, Hershey, and Pittsburgh, Pa: Denver and Aurora, Colo: Washington, DC; Amsterdam and Groningen, The Neherlands; and Boston, Mass

Bird JA, et al. Conducting an Oral Food Challenge: An Update to the 2009 Adverse Reactions to Foods Committee Work Group Report. J Allergy Clin Immunol Pract. 2020 Jan;8(1):75-90.e17.

Additional References for Infant OFCs

Oral Food Challenges in Infants and Toddlers

Justin Greiwe, Mo^{a,b,+}

KEYWORDS

· Food allergy · Oral food challenge · Anaphylaxis · Infants · Epinephrine

KEY POINTS

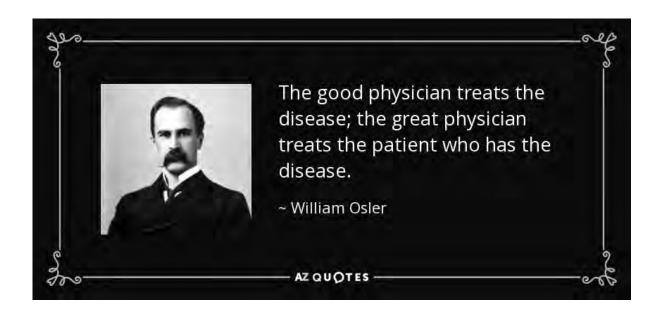
- · Oral food challenges are a critical procedure to identify patients with IgE-mediated food allergy when the history and testing are not specific enough to confirm a diagnosis
- · Food challenges in Infants and toddlers are both safe and practical in a clinical setting.
- Comprehensive past medical history is critical in the diagnosis of food aliergy and should be used to determine subsequent testing and interpretation of results.
- · Food allergies are associated with significant social and psychological consequences that often are overlooked by health care professionals.
- · More emphasis needs to be placed on food challenge education and hands-on experience during fellowship training.
- 1. Greiwe J. Immunol Allergy Clin North Am. 2019 Nov;39(4):481-493.
- Greenhawt M. Allergy Asthma Proc. 2019 Jan 1;40(1):62-69. 2

Here is My New FAVORITE Reference

Controversies in Allergy

Managing Food Allergy When the Patient Is Not **Highly Allergic**

Scott H. Sicherer, MD^a, Elissa M. Abrams, MD^{b,c}, Anna Nowak-Wegrzyn, MD, PhD^{d,a}, and Jonathan O'B. Hourihane, FRCPI^{1,q} New York, NY: Winnipeg, MB, Canada; Vancouver, BC, Canada; Olsztyn, Poland; and Dublin, Ireland


J Allergy Clin Immunol Pract 2022;10:46-55

Eliciting Dose for 50% of the population with each food allergy

J Allergy Clin Immunol Pract 2022;10:46-55

7

"Treat the patient, not the numbers"

Initial Thoughts...

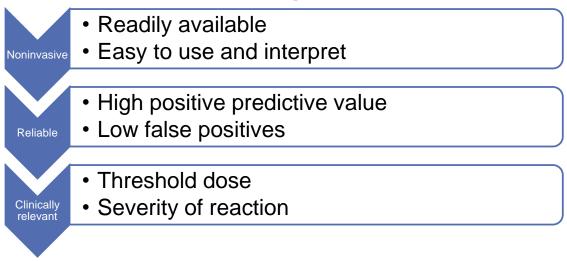
- Food allergies are grossly over diagnosed and misdiagnosed
- WE have the expertise to understand pathophysiology and clinical features of food allergy
- Testing does not diagnose food allergy WE DO

Case 1

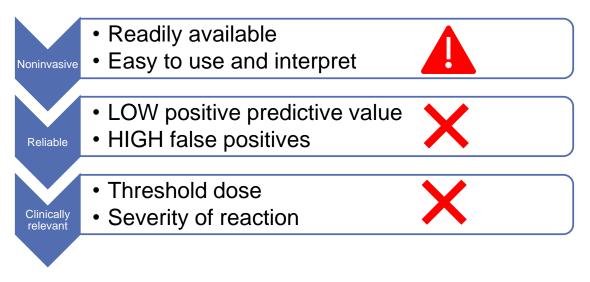
- 6 year old boy with peanut allergy
- Diagnosed 13 months of age
 - Facial hives after eating peanut butter, resolved with antihistamines
- Followed by multiple allergists
 - Repeat skin tests ~8 mm wheal
 - Serum levels:
 - 2012 = 2.64 kU/L
 - 2013 = 9.96 kU/L
 - 2015 = 5.39 kU/L
 - 2016 = 2.90 kU/L
 - 2017 = 5.60 kU/L

11

They said we have to treat all of his allergies at once to reduce the risk of severe reactions. I agree with you that it seems like it would overwhelm his system. They also want to skin test him for 110 allergens including foods he is eating without problems. This is our 5th allergist. Can I seriously fax or email you our records? We will drive to you to perform the oral challenge if you think he stands a chance of passing it. It'll be a 10 hour drive so we can't really do preliminary appointments. I have all of his blood work and a recent skin test tho. He starts kindergarten in august so I feel like we are running out of time and options. Thank you for your time.



Leaving his first Kindergarten field trip... never would've happened without you. Keep doing what your doing. It's changing lives.



First real Halloween! Had to share 😃

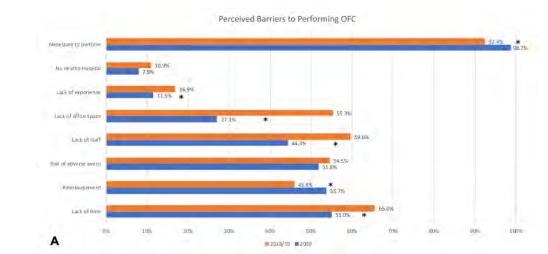
An Ideal Food Allergy Test

Current Food Allergy Tests

Upton JE, Bird JD. Ann Allergy Asthma Immunol. 2020;124(5):451-458.

OFCs in Clinical Practice

TABLE I. Reported number of oral food challenges performed during fellowship and in practice


(per fellowship duration),	
total number	Percent reporting (535 answered)
0	28.97% (155)
1-10	26.92% (144)
11-20	15.70% (84)
21-30	9.72% (52)
31-40	3.93% (21)
41 or more	14.77% (79)
OFC performed in practice	
(per month), total number	Percent reporting (513 answered)
0	5.46% (28)
1-5	58.09% (298)
6-10	19.30% (99)
0-10	7.21% (37)
11-15	7.21% (57)

OFC, Oral food challenge.

Greiwe J, et al. J Allergy Clin Immunol Pract. 2020;8(10):3348-3355.

17

Barriers to Oral Food Challenges in Practice

Greiwe J, et al. J Allergy Clin Immunol Pract. 2020;8(10):3348-3355.

Oral Food Challenge

- Gold standard diagnostic procedure to establish a diagnosis of food allergy
- · Can be utilized in any age group
- · Can help determine:
 - · If allergy is present when history/testing indeterminate
 - If tolerance has developed
 - If individual can tolerate other tree nuts not involved in suspected reaction

Bird JA, et al. Conducting an Oral Food Challenge: An Update to the 2009 Adverse Reactions to Foods Committee Work Group Report. J Allergy Clin Immunol Pract. 2020 Jan;8(1):75-90.e17.

Don't perform unproven diagnostic tests, such as immunoglobulin G (IgG) testing or an indiscriminate battery of immunoglobulin E (IgE) tests, in the evaluation of allergy.

Don't perform food IgE testing without a history consistent with potential IgE-mediated food allergy.

https://www.choosingwisely.org/societies/american-academy-of-allergy-asthma-immunology/

What Makes a Good Screening Test?

Important Characteristics	Food IgE Skin and Serum Tests
Is asymptomatic disease prevalent?	No
Does the disease cause significant morbidity or mortality?	Potentially
Is treatment available to prevent disease through early detection?	No
Does the test accurately identify those with disease? (True positives)	No
Does the test inaccurately identify those without disease? (False positives)	Yes
Will inaccurate screening lead to unnecessary additional testing or treatment?	Absolutely

Inhal Toxicol. 2014 Nov; 26(13): 811-828.

Proper Interpretation of IgE Testing

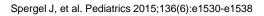
- Use test results to determine sensitization vs no sensitization
- Size of sensitization helps determine likelihood of allergy being present
- All testing can help determine is the best approach to eating the food again
 - Home
 - Office
 - Avoidance

Case 2

- 2 year old boy diagnosed with milk, egg, peanut, soy, tree nut allergies
- No prior ingestion or immediate onset reactions
- Severe eczema as infant
- PCP obtained a food allergy panel at 9 months of age to 'find the cause'
 - Milk = 1.91 kU/L
 - Egg = 7.21 kU/L
 - Peanut = 5.63 kU/L
 - Soy = 0.67 kU/L

Case 2

- Family told to strictly avoid milk, egg, peanut, soy, tree nuts
- Mother told to remove from her diet while breast feeding
- Eczema gradually improved
- Tolerating fruits, vegetables, meats and also now soy products
- Sought evaluation by allergist at 2 years of age
- Repeat testing

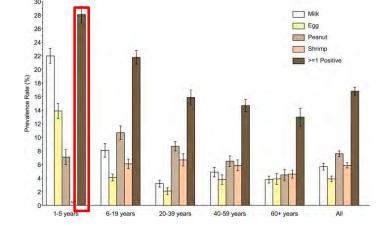


 Primum non nocere (First, do no harm)

 Child with eczema eating a food without problems
 Image: Child with eczema eating a
 Image: Child with Elevated food specific IgE AND
 Image: Child with eczema eating a

told to avoid that

food


food without problems

25

13

Allergy

Rates of Sensitization > Clinical Allergy

NHANES data reveal 28% of children with specific IgE > 0.35 kU/L
 Clinical allergy rates 2-6%

Liu AH et al. JACI. 2010;126(4):798-806.

We Should NOT Diagnose Food Allergy Based Upon:

- Testing alone
 - Especially if they are eating the food without problems!!!
- Eczema
- Chronic urticaria
- Parental concern
- Chronic GI symptoms
- Family history

Food Elimination is NOT a Benign Intervention

Nutritional deficiencies Anxiety Disordered eating May CAUSE allergy

Rare Causes of IgE Mediated Allergy

Brancaccio RR. Dermatol Ther. 2004;17(4):302-13.

Meats, fruits, vegetab	les, and other foodstuffs	Spices	Additives	
Apple Apple Apricot Ammond Arritichdae Arritichdae Maritichdae Maritichdae Bears Bears Bears Bears Bears Bears Bears Bears Bears Bears Bears Bears Bears Bears Bears Bears Bears Bears Bears Carnot Ca	Liver Lapitr seed Malae	Carrence pred Carcence prepret Toriander Corinder Carry Garlie Mostard Onian, Partike Jositky Jositky Thyme	Associa cards Amartin Beurgic acid Beurgic acid Cinnamic acid Cinnamic acid Callador Callador Callador Callador Callador Bernaldetrike Bernaldetrike Bernaldetrike Bernaldetrike Bernaldetrike Bernaldetrike Bernaldetrike Bernaldetrike Metsanol Mets	

Why Are There So Many False Positives?

- Eczema
- Allergic rhinitis
- Cross reactive allergens
- IgG binding
- Dermatographism

		v
LERGEN(S) INTERP	-	
LERGEN: CAT DAND	<0.10	
LERGEN COCKROAC	<0.10	
LERGEN: DOG DAND.	1.34	1.
LERGEN: MITE FAR.	<0.10	
LERGEN: MITE PTE	<0.10	
LERGEN ALMONDS IGE	0.22	
LERGEN: APPLE IGE		
LERGEN: BANANAIGE	2.62	14
LERGEN: CASHEWS IGE	0.17	
LERGEN: COD IGE	0.48	10
LERGEN: CRABIGE	<0.10	
LERGEN: EGG WHIT	4.97	10
LERGEN: LOBSTER IGE	<0.10	
LERGEN: MILK (CO	1.06	1*
LERGEN: PEANUT IGE	0.48	1*
LERGEN: PECAN NU	<0.10	
LERGEN: PISTACHI	0.19	
LERGEN: SALMON IGE	0.27	
LERGEN: SCALLOP IGE	<0.10	
LERGEN: SHRIMP IGE	<0.10	
LERGEN: TUNAIGE	0.20	

Cross-Reactivity: Clinical vs Testing

Foods	Clinical Reactions	Testing
Peanut + Tree nuts	Low/none	Moderate
Tree nuts + Other tree nuts	Pecan + walnut Cashew + pistachio	High
Fish + Shellfish	Low/none	Low/none
Fish + Other fish	High	High
Shellfish + Other shellfish	High	High
Peanut + soy	Low/none	High
Wheat + grains	Low/none	High
Cow's milk + goat/sheep's milk	High	High

Sampson HA, et al. JACI. 2014;134(5).

Aeroallergen Cross Reactivity

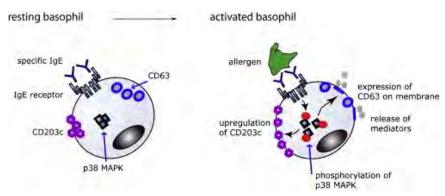
Aeroallergen	Food
Dust mite Cockroach	Shellfish
Birch tree pollen	Peanut Fruits Soy
Grass pollen	Wheat
Tree pollen	Tree nuts

Sampson HA, et al. JACI. 2014;134(5).

33

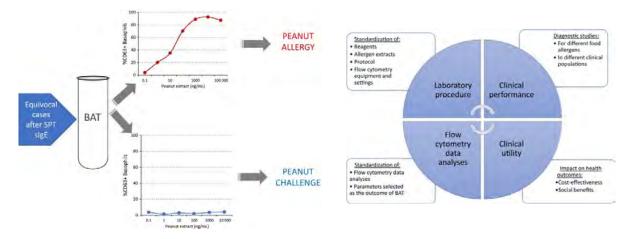
Testing Does Not Predict Severity of Reactions

- 19 year old college sophomore
- Seeking 2nd opinion as previous allergist retired
- Seeking OIT for peanut
- "I'm deathly allergic to peanuts"


Peanut/Tree Nut Component Testing

 Predictive capabilities vary according to population background

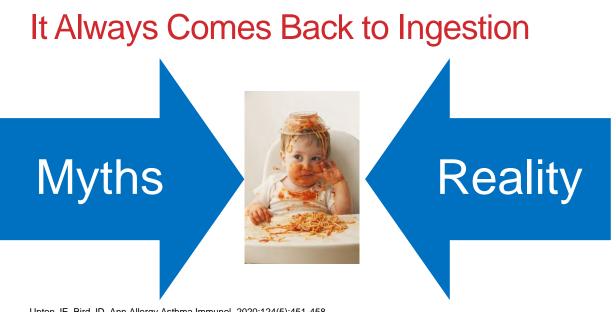
Nut	Antigens Associated with Clinical Allergy
Peanut	Ara h 1, 2, 3
Hazelnut	Cor a 9, Cor a 14
Cashew	Ana o 3
Walnut	Jug r 1
Pecan	Car I 1, Car I 2
Pistachio	Pis v 1, Pis v 2


BSACI guideline for the diagnosis and management of peanut and tree nut allergy. Clin & Exp Allergy. 2017;47:719-39.

Basophil Activation Testing

Hausmann OV, et al. Immunology and Allergy Clinics. 2009;29(3):555-566.

BAT as 2nd Line Test


Santos AF, Shreffler WG. Clin Exp Allergy. 2017 Sep; 47(9): 1115-1124.

Epitope Mapping for Peanut Allergy

Results: In the validation using CoFAR2 and POISED cohorts, the peanut BBEA diagnostic test correctly diagnosed 93% of the subjects, with a sensitivity of 92%, specificity of 94%, a positive predictive value of 91%, and negative predictive value of 95%.

Conclusions: In validation of the peanut BBEA diagnostic test, the overall accuracy was found to be superior to existing diagnostic tests for peanut allergy including skin prick testing, peanut slgE, and peanut component slgE testing.

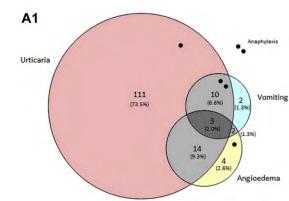
Suárez-Fariñas M, et al. Allergy. 2021 May 15. doi: 10.1111/all.14905. Epub ahead of print.

Upton JE, Bird JD. Ann Allergy Asthma Immunol. 2020;124(5):451-458.

Safety of Oral Food Challenges

- Akuete et al determined OFCs are much safer than previously thought¹
 - 6,377 OFCs from 2008-2013
 - 86% patients challenged w/o reaction
 - Only 2% required epinephrine
 - 98% of OFCs completed without anaphylaxis
- Stark contrast to previous studies
 - Epinephrine use during OFC 6-33%¹⁻⁶
- Late-phase & biphasic reactions after OFCs are rare
 - 1.5-4% in previously published studies^{7,8}
- 2 known fatalities since description of modern OFC procedure published in 1976

[.] J Allergy Clin Immunol. 2009; 124: 1267–1272


Safety with Infants/Toddlers

- Body of evidence demonstrates safety and efficacy in children <18 months
- Most reactions are mild and cutaneous
 - Low rate of anaphylaxis
 - Epinephrine rarely needed

1. Osborne NJ, Koplin JJ, Martin PE, et al. Prevalence of challenge-proven IgE-mediated food allergy using population-based sampling and predetermined challenge criteria in infants. J Allergy Clin Immunol 2011;127:668-76 e1-2. Do Toil G, Roberts G, Sayre PH, et al. Randomized train of penut genoting: protein genoties to be an input protein genotic train of penut consumption in infants of a insk for penut allergy. N Engl J Med 2015;372:803-13.
 Perkin MR, Logan K, Tseng A, et al. Randomized train of penut consumption in infants at risk for penut allergy. N Engl J Med 2015;372:803-13.
 Perkin MR, Logan K, Tseng A, et al. Randomized train of penut consumption in infant at risk for penut allergy. N Engl J Med 2015;372:803-13.
 Perkin MR, Logan K, Tseng A, et al. Randomized train of penut consumption in infants of a penut and trains at risk for pega allergy. J Allergy Clin Immunol 2017;139:1621-8 e8.
 Palmer DJ, Sullivan TR, Gold MS, Prescott SL, Makrides M. Randomized controlled trial of early regulare gg intake to prevent egg allergy. J Allergy Clin Immunol 2017;139:1600-7 e2.
 Bellach J, Schwarz V, Ahrens B, et al. Randomized controlled trial of hers egg consumption for primary prevention in infants. J Allergy Clin Immunol 2017;139:1600-7 e2.

HealthNuts Food Challenges

598 peanut challenges at 1 year of age

Which Infants Should We Challenge?

- Anyone with a ~50% chance of not having symptoms
- OR...any family that wishes to better understand their child's allergic potential

	5	Serum food-IgE (kIU/L)*	SPT wheal (mm)*	
Food	~95% Positive	~50% Negative†	~95% Positive	~50% Negative
Cow's milk	≥15 ¹⁶	<2 ²³	2821	
Egg white	≥ 5 if younger than 1 year ⁽³² $\geq 7^{16}$	$\leq 2^{23}$	≥7 ²¹	≤3 ²²
Peanut Fish	≥ 2 if younger than 2 years ¹³³ $\geq 14^{16}$ $> 20^{16}$	${\leq}2$ with and ${\leq}5$ without history of peanut reaction^{24}	≥8 ^{17,21}	$\leq 3^{17}$

Nowak-Wegrzyn A, Assa'ad AH, Bahna SL, et al. Work Group report: oral food challenge testing. J Allergy Clin Immunol 2009;123:S365-83.

	isk Assessment for OFCs
Low Risk of Reaction	1. Recent accidental ingestion to small amount of food without clinical symptoms 2. Favorable test results
High Risk of Reaction	1. Recent reaction to the food in the past 6-12 mo 2. Diagnostic or high-positive test results
Low Risk of Severe Reaction	1. No past severe reactions 2. Food not usually implicated in severe food-induced anaphylaxis (eg, meat, fruit, vegetable) 3. No asthma
High Risk of Severe Reaction	 Past severe reaction Severe reaction to trace amounts of food Food frequently implicated in fatal and near-fatal food-induced anaphylaxis (eg, peanut, tree nuts, fish, shellfish, seeds) Asthma (regardless of severity) Conditions that may affect the resuscitation: cardiovascular disease, difficult vascular access or intubation, β-blocker medication

Day of: Reasons to Reschedule

TABLE I. Reasons to reschedule or delay an OFC

Consider postponing the OFC if the patient has any of the following:

- Concurrent illness, fever, or active respiratory symptoms (ie, wheeze or cough)
- Used a short-acting β -agonist within the preceding 48 h for cough or wheeze
- · Poorly controlled asthma, AD, or allergic rhinitis
- · Unstable cardiovascular disease
- Pregnancy
- · Beta-blocker therapy
- \bullet Patient has not discontinued medications as outlined in Tables II and III

Bird JA, et al. Conducting an Oral Food Challenge: An Update to the 2009 Adverse Reactions to Foods Committee Work Group Report. J Allergy Clin Immunol Pract. 2020 Jan;8(1):75-90.e17.

Conversations with the Family

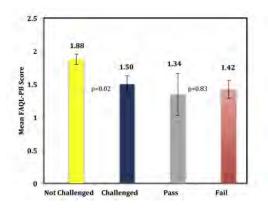
- · Why pursue the oral challenge?
- Risks
- Benefits
- Likely outcome
- Possible outcome
- Are they willing to keep in the diet after the challenge?
 - 25% do NOT

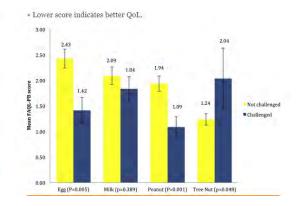
Eigenmann PA, et al. Pediatr Allergy Immunol. 2006 Dec;17(8):601-5.

Risks of Unsuccessful Challenge

- Acute allergic reaction
- Anaphylaxis
- Emotional distress
- Anxiety

Bird JA, et al. Conducting an Oral Food Challenge: An Update to the 2009 Adverse Reactions to Foods Committee Work Group Report. J Allergy Clin Immunol Pract. 2020 Jan;8(1):75-90.e17.


Benefits of Unsuccessful Challenge


- Demonstration of signs/symptoms of allergic reaction
- Demonstration of possible threshold/reactive dose
- Demonstration of rapid response to therapy
 - · Have the parents administer epinephrine
- Decreased anxiety
- Decreased dietary restrictions
 - Precautionary labeling
 - Dining out
 - Particularly powerful when families have imposed severe restrictions

Bird JA, et al. Conducting an Oral Food Challenge: An Update to the 2009 Adverse Reactions to Foods Committee Work Group Report. J Allergy Clin Immunol Pract. 2020 Jan;8(1):75-90.e17.

Benefits of Unsuccessful Challenge

Quality of life improves after a challenge

Franxman TJ, et al. J Allergy Clin Immunol Pract. 2015 Jan-Feb;3(1):50-6

49

Benefits of a Successful Challenge

- Life altering
- Improved quality of life

Tips for a Successful Day

- Discuss and REPEAT what day entails
- Address anxiety and potential scenarios before feeding
- Distraction, distraction, distraction
- Have families bring food, snacks, utensils, sippy cups
- · Stock vehicles and masking agents in your office

Rate Limiting Step is ALWAYS Desire to Eat

- Offer choices
- · Limit stress, act casual when refusal occurs
- Toddlers are always in charge
- · Be prepared to not achieve desired amount of protein
- There is no absolute protocol to follow

Allergen	Food	Protein content per serving size	Age				
			4-11 mo	1-3 y	4-8 y	9-18 y	19+ y
Egg	French thast (1 egg per 1 slice of bread)*	6 g if made with 1 large egg	1/2-1 slice	1/2-1 slice	1 slice	1-2 stices	1-2 slices
	Hard-boiled or scrambled egg	6 g/l large egg	1/z-1 egg	1/2-1 cgg	1 egg	1-2 eggs	1-2 eggs
Fish	Cooked fish:	n g/L oz	1/2-1 oz	1.02	1.02	2-3 02	3-4 nz
Grains	Cooked cereal	5 g per 1/4 cup dry (oatmeal or Cream of Wheat)	1/2 cup	V ₄ con	3-32 cup	9 ₂ -1 cup	1/2-1 cup
	Cooked pasta*/rice	3 g per 1/2 cup	V ₄ cup	14 cup	1/2-1/2 cup	Vy-1 cup	V-1 cup
	Infant cereal	1-2 g per 1/4 cup	1/4-1/2 cup	14-14 cup			
	Muffin or roll bread	4-6 g/multim or roll	14-1/2 piece	1/2 piece	1/2-1 piece	1 piece	1 piece
	Ready-to-cat cereal	2-6 g/l cup	1/2-1/acup	1/4-1/4 CUID	3 14 cup	%-1 cup	3/4-1 cup
	Slice bread	2-4 g/slice	1/4-1/2 sitce	1/2 slice	1/2-1 slice	1-2 stices	2 slices
Milk	Infant formula	2-3 g/5 oz	4-8 oz.				
	Milk	8 g/8 oz		4-8 02	4-8 02	8 oz	8 oz.
	Cottage cheese	10-14 g/4 oz	14-1/2 cup	1/2-1/2 cup	'A-1 cup	%-1 cup	1 cup
	Hard cheese	6-8 g/l oz	14-1/2 02	Va oz	1 02	1.02	1 1/2 02
	Yogurt (NOT Greek style)	8 g/8 oz	14-16 cop	VA-Va cup	W-1 cap	Ve-i cup	V-1 cap
Peanut	Peanut (whole)	2 al~8 peanuts	9.914		16 pieces	16 pieces	16 pieces
	Peanut butter	3 e/l thip	1 rounded thep:	1-2 thep	1-2 then	2 thsp	2 tbsp
	Peanut flour or peanut butter powder	3 g/1 thsp original or 2.25 g/1 thsp chocolate flavor	I rounded thep/	1-2 thep	1-2 tbsp	2 thsp	2 tbsp
	Peanut/chocolate candy cups (full-size)	0.875 g/l cup		1-Z candy cups	1-2 candy cups	2-3 candy cups	2-3 candy cur
Shellfish	Shellfish	5 g/1 oz	Vel ox	Loz	1 oz	2-3 oz	3-4 oz.
Soy/legumes	Infant formula	2.3.1 g/5 oz	4.8 07				
	Sov beverage	7 g/8 oz		4-8 oz	4-8 oz	8 oz	8 oz.
	Cooked beans (kidney, black, chickpeas, lentils)	7-9 g per 1/2 cup	$V_{N^{+}}V_{n}$ cop	N ents	93-92 cup	1/2-1 cup	1 cup
	Tofu	8 g/3 oz Firm tollu	16-1 mz :	1 oz	1 oz	2-3 02	3-4 oz
	Yogurt	5 g/6 oz	14-15-cup	14-14 cup	%-1 cup	1 cup	1 cup
Tree out	Almond	3 g/11 whole nuts	Alena .		11 piacos	11 pieces	11 pieces
	Almond butter (Barney butter brand)	3 g/l tbsp	I thur	1-2 thep.	1-2 thep	1-2 tbsp	1-2 (bsp
	Brazil nut	3 g/4.5 mits			41/2 pieces	4% pieces	dly pieces
	Cashew	3 g/10 whole nuts			10 pieces	10 pieces	10 pieces
	Coconut flour	3 g/l tbsp	I thsp	1-2 thsp	1-2 tbsp	2-3 tbsp	2-3 thsp
	Coconut milk	3 g/3 oz	5	3 oz	3 uz	4-8 oz	4-8 oz
	Hazelnut	3 g/3 thep hazelnuts or hazelnut meal			3 tbsp	3 tbsp	3 tbsp
	Pecan (halves)	3 g/25 halves			10-25 halves	25 halves	25 halves
	Pine nuts	3.5 g/3 tbsp pine nuts			3 tbsp	3-4 tbsp	4 tbsp
	Pistachio	3 g/20 whole nuts			20 pieces	20 pieces	20 pieces
	Walnut (halves)	3 g/10 halves			10 halves	10 halves	10 halves

Bird JA, et al. Conducting an Oral Food Challenge: An Update to the 2009 Adverse Reactions to Foods Committee Work Group Report. J Allergy Clin Immunol Pract. 2020 Jan;8(1):75-90.e17.

53

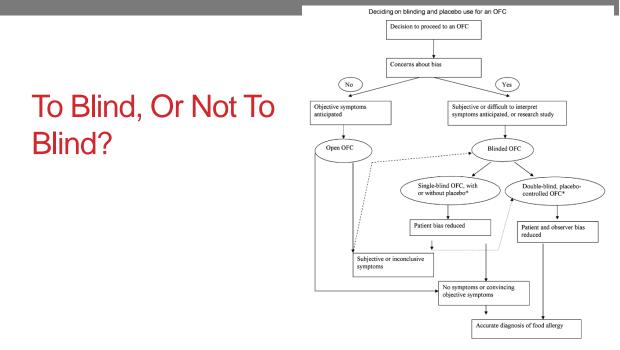
Multiple Tree Nut Challenges

- "Tree Nut allergy" is not a diagnosis
- Peanut + tree nuts (any) = no clinical cross reactivity
- Cashew + pistachio = HIGH cross reactivity
- Walnut + pecan + hazelnut = HIGH cross reactivity

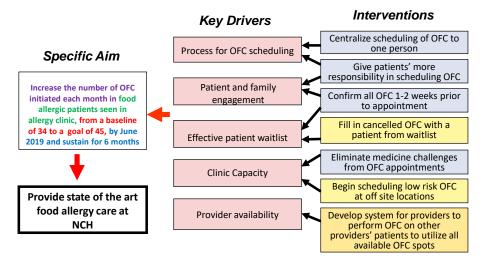
Andorf S, et al. JACI: IP. 2017;5(5):1325-1334.

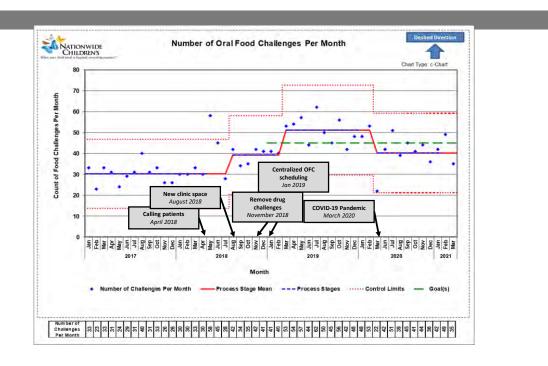
At Home Challenges

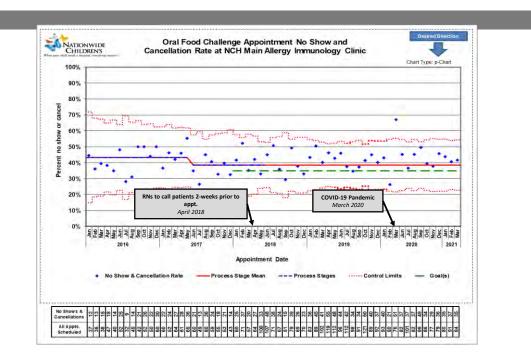
- Can consider when risk is low
 - Age
 - Prior history
 - Recent IgE results
 - Type of food
- Telemedicine visits???

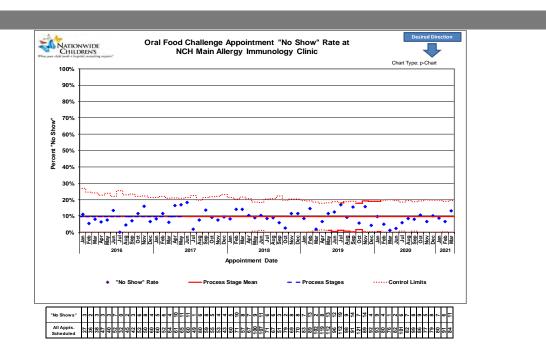

MacGinnitie, Andrew J. et al. Journal of Allergy and Clinical Immunology: In Practice, Volume 6, Issue 2, 353 – 360 Mack DP, et al. J Allergy Clin Immunol Pract. 2020 Oct;8(9):2851-2857.

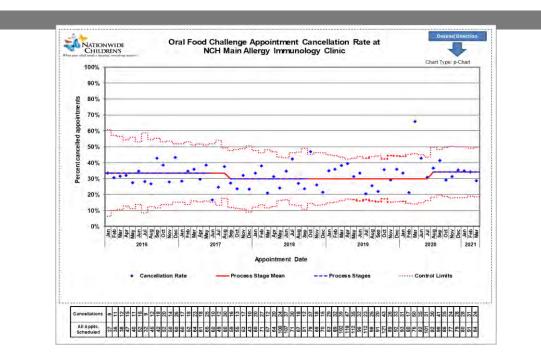
High Risk Challenges, aka "Exposure Therapy"

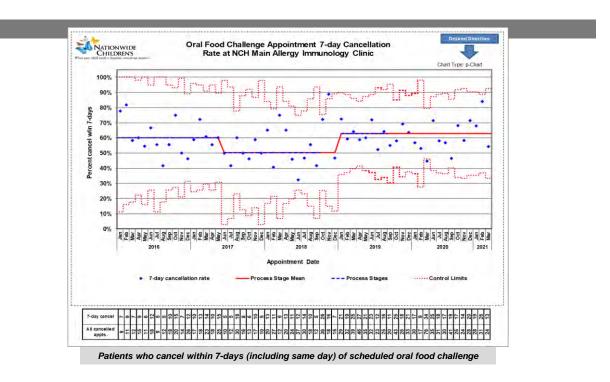



Can a peanut allergy kill you?






Increasing the number of Oral Food Challenges in Allergy Clinic



Our Mission

Provide a comprehensive center dedicated to evidence based and personalized food allergy management for individual families, our community, and beyond.

Hi - would you mind if one of our media folks from the hospital reached out to you? Please let me know if it's ever too much!!! Thanks - hope all is well

May 8, 2019, 10:04 AM 🗸

Of course not! It'll never be too much. My hope is that more doctors will perform oral challenges and more parents will feel comfortable doing them.

Thanks for all you do!

May 8, 2019, 10:16 AM

Final Thoughts

- Oral food challenges offer a mechanism for families and patients to gain any semblance of control over a condition that is filled with uncertainty
- The information obtained is VALUABLE
- We can help our patients by giving them information, confidence, and experience

67

Thank You