ABCs of Immune Modifiers

Dennis K. Ledford, MD

Ellsworth and Simmons Professor of Allergy/Immunology University of South Florida Morsani College of Medicine Tampa, FL USA

Relevant Disclosures

- Research Investigator Funds to University employer
 - Genentech
 - MedImmune/AstraZeneca
- Legal opinion
 - Asthma death
 - Latex allergy
 - Corticosteroid allergy
 - Metal allergy

- Consultant
 - Novartis
 - Genentech
 - Astra Zeneca
 - Boehringer Ingelheim
- Speaker
 - Astra Zeneca
 - Genentech
 - Meda
 - Merck
 - TEVA

Objectives

- Review the therapeutic potential of biologics or monoclonal antibodies and immune modifiers in asthma and allergic disease
- Discuss strategies to optimize treatment with monoclonal antibodies and immune modifiers
- Discuss patient-specific features that can influence monoclonal antibodies efficacy
 - Biology and Biomarkers

The Mother of All Biologic Modifiers

The Mother of All Biologic Modifiers

CORTICOSTEROIDS

Small Molecule Biololgic Modifiers

- Hydroxychloroquine
 - Toll receptor inhibitor (TLR9, TLR3,7)
- Dapsone
 - Neutrophil myeloperoxidase inhibitor
- Methotrexate
 - Antimetabolite
 - Adenosine inhibitor for neutrophils
- H1 or H2 inhibitors
 - High dose
 - Questionable effects

Small Molecule Biololgic Modifiers

- Phosphodiesterase inhibitors
 - Increased cyclic AMP
 - Possible adenosine inhibitors
 - Asthma and atopic dermatitis
- Mycophenalate mofetil
 - Interfers with inosine metabolism
 - Targets B and T cells
- Colchicine
 - Interfers with microtubules
 - PMN chemokinesis and phagocytosis

Small Molecule Biololgic Modifiers

- Antimetabolites
 - Inhibit cell division without long term toxicity
- Cytotoxic therapies
 - Inhibit cell division with potential of DNA modification and long term cancer risk
- CRTH2 inhibitors
 - Inhibits T cell and eosinophil migration
- Calcineurin inibitors
 - Select T cell inhibitors

Monoclonal Antibodies

- Engineered specificity
 - Typically animal antibody due to limited ability of human immune system to respond to human antigens
 - Targets usually molecules or receptors
- Humanized
 - Reduced animal determinants by grafting genetic segments into human

Monoclonal Antibodies

- Murine (-omab)
 - Short half-life with resistance
 - Side-effects
- Chimeric (-ximab)
 - Grafting of variable region or receptor
- Humanized (-zumab)
 - 95% human
 - Mouse hypervariable region
- Human (-umab)
 - Transgenic mice or phage libraries

Monoclonals To Be Discussed

- Anti-IgE
 - Omalizumab
 - Ligelizumab
- Anti-IL-5
 - Mepolizumab
 - Reslizumab
- Anti-IL-5Ra
 - Benralizumab

- Anti-IL4/13Rα
 - Dupilumab
- Anti-IL-13
 - Lebrikizumab
 - Tralokinumab
- Others
 - TNF-α inhibitors
 - Rituximab

Therapeutic Response Variability

- Due to the heterogeneity of asthma, it is inevitable that distinct dominant pathogenic mechanisms exist (e.g. Th2/eosinophil dominant inflammation)
- Finding which pathogenic factor(s) are important in individual patients is a challenge in treating severe asthma
- Pathogenic pathways may vary with time
- A broad spectrum immunomodulator approach for all patients is problematic due to potential adverse consequences, cost and lack of efficacy in all patients

Biomarker	Treatment expected to produce a response	Associations	Comments (point of care, variability/fluctuation)
BLOOD			
Eosinophil	Anti-IL5 Anti -IgE Anti- IL-4/IL-13 Corticosteroids (CS) CRTH2 antagonists	Exacerbations LF decline Fixed airway obstruction	Easily available Significant fluctuation
Specific IgE	Anti-IgE AIT	Exacerbations AHR (AIT)	
Periostin Dipeptidyl peptidase-4 (DPP-4)	Anti-IL13	LF decline Exacerbations	Research type Assay dependent ^(ref)
INDUCED SPUTUM			
Eosinophils	Anti IL-5 ICS	Exacerbations	Research type Significant fluctuation ^(ref)
IL-13	Anti IL-13	?	Research type
EXHALED BREATH			
FeNO	Anti IL-5 Anti IgE Anti IL-13 ICS	Exacerbations, LF decline	Easily available Point of care Significant fluctuation ^(ref)
Metabolomics (VOC)	ıcs	2	Research type

Monoclonals To Be Discussed

- Anti-IgE
 - Omalizumab
 - Ligelizumab
- Anti-IL-5
 - Mepolizumab
 - Reslizumab
- Anti-IL-5Rα
 - Benralizumab

- Anti-IL4/13Rα
 - Dupliumab
- Anti-IL-13
 - Lebrikizumab
 - Tralokinumab
- Anti-IL-33

Mepolizumab Phase III Studies		
Phase (trial name(s))	Phase III (SIRIUS, MENSA), PhIIb/III (DREAM), plus extensions (MEA115666, MEA115661)	
Target Patient Population	 12 years and older HD ICS/LABA (>880 µg/day fluticasone or equivalent) +/- chronic OCS (5-35mg/d) Blood eosinophil count ≥150 cells/µL at screening OR ≥300 cells/µL in the past 12 months H/O Exacerbations 	
Admin and Frequency	100 mg SC or 75 mg IV Q4W	
Ortega et al . N Engl J Med 2014; 371:1198-1207; Bel et al . N Engl J Med 2014; 371:1189-1197		

- Relapse at 12 weeks after acute exacerbation is 40-50% despite systemic steroids
- Patients treated according to guidelines in ED and received ICS + ~40mg/d prednisone
- Does benralizumab (single IV dose) reduce recurrence of exacerbations?

Benralizumab Primary Outcomes

Proportion of subjects with ≥ 1 exacerbation at 12 weeks was not different between placebo and combined benralizumab groups (38.9% vs 33.3%; P=.67).

Compared with placebo, exacerbation rates reduced by 49% (3.59 vs 1.82; P=.01) and exacerbations resulting in hospitalization by 60% (1.62 vs 0.65; P=.02) in the combined groups

Lavolta I and II

- Two phase 3 multicenter trials with more than 2100 subjects in 28 countries
- Endpoint: asthma exacerbations over 52 wk
- Lavolta I: reductions in exacerbations in subjects with increased eosinophils and periostin with minimal increase in FEV1
- Lavolta II: NO statistical reduction in exacerbations

American Thoracic Society, 2016. A1318-A1318.

- Phase II study: assess efficacy in adults with persistent, moderate-to-severe asthma and symptoms not well controlled with medium- to high-dose ICS + LABA and elevated eosinophil levels:
 - blood eos ≥300 or sputum eos level ≥3%

Wenzel et al. NEJM: 05/2013

Dupilumab Improved Secondary Endpoints

- FEV1 and PEF
- ACQ
- Sx Scores
- SABA use
- Nocturnal awakenings
- SNOT-22 score

Wenzel et al. NEJM: 05/2013

Phase 2B Study Results

- Every 2 weeks works well
- If Eos >300:
 - Decreased exacerbations
 - Improved FEV1
- Causes an initial increase in blood Eos which declines towards baseline with further treatment.
- Well tolerated

Presented at ERS 2015

Critical Issues / Questions for Th2 Blockers

- Many options for similar patient populations.
 - Phenotype/Endotype (Biomarker)
 driven choices overlap: No specific biomarkers
- Optimal treatment goals have not yet been met:
 - True Immunomodulation: prevent/alter disease course
- Th2 blockers likely have favorable risk/benefit ratio

Too Weak Very Specific

Too Powerful Broad-spectrum

Non-Th2 High Asthma

- Heterogeneous group
- Primary targets not well defined
- Likely treatment population size smaller, incentive for development is reduced
- May be our most challenging patient population

Other Potential Applications

- Asthma
 - TNF-α inhibitors
 - Rituximab
- Atopic dermatitis
 - Calcineurin inhibitors
 - Antimetabolites including mycophenalate mofetil
 - Omalizumab, dupilumab, rituximab
 - Phosphodiesterase 4 inhibitor (apremilast)

Other Potential Applications

- Nasal polyps
 - Omalizumab, dupilumab, mepolizumab
- Urticaria
 - Omalizumab
 - Antimetabolites
 - Dapsone
 - Hydroxychloroquine
 - Rituximab
 - Colchicine

Conclusions

- Immune mechanism modification offers the possibility of treating asthma and allergic disease at a basic and not symptomatic level
- Understanding of the immune mechanism of the disease is critical to intentional application of biologic modifiers
- Targets that are limited to one disease or organ system are unusual resulting in side effects, Th2 mechanisms tend to be less risky
- Small molecules cannot be easily designed but offer oral therapy
- Monoclonal therapies offer designed target development but will be SQ or IV