Chemotherapy and Monoclonal Antibody Hypersensitivity: Evaluation and Management

Aleena Banerji, MD
Associate Professor
Division of Rheumatology, Allergy & Immunology
Harvard Medical School
Massachusetts General Hospital
Boston, MA

Disclosures

• None
Objectives

- Review common adverse/hypersensitivity reactions encountered with increased use of chemotherapeutics and monoclonal antibodies
- Provide effective tools to evaluate reactions to chemotherapeutics and monoclonal antibodies
- Discuss treatment strategies to manage reactions

Introduction

- Rapid expansion of the use of chemotherapeutics and biologics has resulted in an increase in hypersensitivity reactions
- All biologics have the potential to induce immunogenicity
 - Degree of humanization, pattern of glycosylation, episodic administration
Allergy vs. Side Effect

- Most side effects in chemotherapy are predictable such as hair loss, mucositis, nephrotoxicity, hepatotoxicity, ototoxicity, immunosuppression are caused by the chemotherapy affecting the non-cancerous “normal” cells in the body.

- Hypersensitivity reactions are not common, are unpredictable, and unrelated to the known pharmacologic reactions of the chemotherapeutic agent.

Incidence of Reactions

<table>
<thead>
<tr>
<th>Agent</th>
<th>Overall</th>
<th>Grade 3-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carboplatin (Paraplatin®)</td>
<td>2 %</td>
<td>none</td>
</tr>
<tr>
<td>Cetuximab (Erbitux®)</td>
<td>15-20%, dependent on tumor type</td>
<td>3%</td>
</tr>
<tr>
<td>Docetaxel (Taxotere®)</td>
<td>5-12%</td>
<td>2%</td>
</tr>
<tr>
<td>Eloxatin (Oxaliplatin®)</td>
<td>15-33%</td>
<td>2-3%</td>
</tr>
<tr>
<td>Paclitaxel (Taxol®)</td>
<td>41%</td>
<td>2%</td>
</tr>
<tr>
<td>Rituximab (Rituxan®)</td>
<td>77% First infusion, 30% fourth infusion, 14% eighth infusion</td>
<td>10%</td>
</tr>
</tbody>
</table>

Vogel, CJON 2010
Evaluation of a Patient with HSR

- Premedication
 - Steroids
 - Antihistamines
- Slowed infusion rates
- Desensitization

Decrease the Risk of a HSR

Brennan et al., JACI 2009
Carboplatin Hypersensitivity

- Ovarian cancer is the most fatal gynecologic malignancy
 - Majority of patients will develop recurrent ovarian cancer

- For women with recurrent ovarian cancer, repeat treatment with carboplatin is frequently recommended.
 - Increased risk of hypersensitivity reaction (HSR)
 - 1% with 6 or less exposures to carboplatin
 - Approximately 25% with 7 or more exposure

Incidence of hypersensitivity reactions in patients receiving Carboplatin

<table>
<thead>
<tr>
<th>Standard Infusion</th>
<th>Study</th>
<th>Type of Cancer</th>
<th>Frequency of HSR</th>
<th>Number of Previous cycles of carboplatin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Markman, M et al (1999)</td>
<td>Gynecologic</td>
<td>22/83 (27%)</td>
<td>7 Cycles or greater</td>
</tr>
<tr>
<td></td>
<td>Gaducci, A et al (2008)</td>
<td>Recurrent Ovarian</td>
<td>15/60 (25%)</td>
<td>6 cycles or greater</td>
</tr>
<tr>
<td></td>
<td>Schwartz, JR et al (2007)</td>
<td>Gynecologic</td>
<td>55/118 (47%)</td>
<td>Cycle 6-13 (mean cycle 9)</td>
</tr>
<tr>
<td></td>
<td>Caerbhail, R et al (2010)</td>
<td>Epithelial ovarian, fallopian tube, or primary peritoneal</td>
<td>111/555 (20%)</td>
<td>7 Cycles or greater</td>
</tr>
<tr>
<td></td>
<td>MGH Historical Data</td>
<td>Gynecologic</td>
<td>14/59 (24%)</td>
<td>7 Cycles or greater</td>
</tr>
</tbody>
</table>

Oxaliplatin Hypersensitivity

Park et al., JIACI 2016
Skin Testing for Platinum Agents

- Skin testing for platinum agents well-validated
 - Skin prick (epicutaneous) testing
 - Intradermal testing
- Patient must not receive anti-histamines for 5 days prior and should hold beta-blockers
- Patient has results same day

Is there a role for skin testing?

- 98-99% positive predictive value
- False negative rates as high as 8.5%

Carboplatin Desensitization is Safe and Effective

- >2000 successful desensitizations at MGH and BWH
- Majority tolerated without any reactions

<table>
<thead>
<tr>
<th>Solution</th>
<th>Dose in each solution (mg)</th>
<th>Volume (ml)</th>
<th>Solution concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>100</td>
<td>0.05 mg/ml</td>
</tr>
<tr>
<td>B</td>
<td>50</td>
<td>100</td>
<td>0.50 mg/ml</td>
</tr>
<tr>
<td>C</td>
<td>500</td>
<td>100</td>
<td>5.00 mg/ml</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step</th>
<th>Solution</th>
<th>Rate (m/s)</th>
<th>Time (min)</th>
<th>Administered dose (mg)</th>
<th>Cumulative dose (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>2</td>
<td>15</td>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>5</td>
<td>15</td>
<td>0.063</td>
<td>0.088</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>10</td>
<td>15</td>
<td>0.125</td>
<td>0.213</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>20</td>
<td>15</td>
<td>0.250</td>
<td>0.463</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>5</td>
<td>15</td>
<td>0.625</td>
<td>1.088</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>10</td>
<td>15</td>
<td>1.250</td>
<td>2.335</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>20</td>
<td>15</td>
<td>2.500</td>
<td>4.835</td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>40</td>
<td>15</td>
<td>5.000</td>
<td>9.838</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>10</td>
<td>15</td>
<td>12.500</td>
<td>22.335</td>
</tr>
<tr>
<td>10</td>
<td>C</td>
<td>20</td>
<td>15</td>
<td>25.000</td>
<td>47.338</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>40</td>
<td>15</td>
<td>50.000</td>
<td>97.338</td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>75</td>
<td>64.4</td>
<td>402.663</td>
<td>500.000</td>
</tr>
</tbody>
</table>

Total time = 3.8 h, Total dose = 500 mg

Lee et al., Gynecol Oncol 2004
Lee et al., Gynecol Oncol 2005
Castells et al., J Allergy Clin Immunol 2008
Hesterberg et al. J Allergy Clin Immunol 2009

Mechanism of HSR to Carboplatin

- Exact mechanism remains unclear
 - Markman et al., suggest that the patient may be sensitized during first-line treatment (6 courses)
 - Retreatment with the same drug provides the additional immunological stimulation
- Felt likely to be IgE mediated
- Skin testing has been validated

Markman et al. J Clin Oncol 1999
Summary: Hypersensitivity to Platinum Agents

- Patient receiving multiple doses of platinum agents can become sensitized
- Consequently, these patients are often denied what is the best systemic therapy
 - results in the use of less effective second generation agents
- Skin testing is useful, but there remains a concern for false negative results
- Desensitization protocols have been successfully used to overcome HSR to platinum agents

Docetaxel and Paclitaxel Hypersensitivity

- HSRs to docetaxel and paclitaxel are primarily due to cremophor (polysorbate 80)
- HSRs occur in 30% of patients decreasing to <4% with premedication using antihistamines and steroids
- Reactions are dose- and rate-dependent and most often occur within the first few min of the 1st or 2nd infusions
- Symptoms include dyspnea, hypotension, bronchospasm, urticarial and erythematous rash
 - Clinical presentations similar to IgE mediated reactions
Abraxane

- There is a cross-reactivity rate of 90% between docetaxel and paclitaxel, therefore, substitution of the two is not recommended

- Cremophor-free formulations of albumin-bound paclitaxel decrease HSR risk

Management of Paclitaxel HSRs

- Slowed infusions
- Increase premedications
- Risk stratification
 - Allow patients to safely receive paclitaxel
 - Reduce the number of unnecessary desensitizations
Other Chemotherapeutic Agents

- **PEG-asparaginase**
 - Risk factors include IV admin, interval >1 week between admins and previous exposure to L-asparaginase

- **Procarbazine**
 - Type 1, 3 and 4 associated reactions with an incidence of 6% to 18%

- **Etoposide**
 - HSRs are thought to be caused by polysorbate 80
 - Can be prevented through adequate premedication and slow infusion rates

Commonly Used Biologics

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Biologicals grouped according to their therapeutic principle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Group</td>
<td>Examples</td>
</tr>
<tr>
<td>Cytokines</td>
<td>INF-α, GM-CSF</td>
</tr>
<tr>
<td>Monoclonal antibodies against</td>
<td></td>
</tr>
<tr>
<td>Cytokines</td>
<td>Infliximab (anti-TNF-α)</td>
</tr>
<tr>
<td>Cell surface molecules</td>
<td>Rituximab (anti-CD20)</td>
</tr>
<tr>
<td>IgE</td>
<td>Omalizumab (anti-IgE)</td>
</tr>
<tr>
<td>Tumor antigens</td>
<td>Cetuximab (anti-EGFR)</td>
</tr>
<tr>
<td>Fusion proteins</td>
<td></td>
</tr>
<tr>
<td>Soluble cytokine receptors</td>
<td>Etanercept (TNF-α-R1-IgG1)</td>
</tr>
<tr>
<td>Soluble cellular ligands</td>
<td>Abatacept (CTLA4-IgG1)</td>
</tr>
</tbody>
</table>

Hausmann et al., Med Clin N Am 2010
Evolution of Therapeutic Antibodies

- Murine: 100% Mouse protein
- Chimeric: 33% Mouse protein
- CDR-grafted: 5-10% Mouse protein
- Human Antibodies: 100% Human protein

Incidence of Infusion Reactions

- Rituximab: 77 cases
- Trastuzumab: 40 cases
- Cetuximab: 12.19 cases
- Panitumumab: 4 cases
- Bevacizumab: <3 cases
- Taxanes: 20-40 cases
- Platinum: 12.16 cases

Chung CH. Oncologist 2008
Classification of HSRs to Biologics

Mechanisms of Hypersensitivity Reactions

IgE and non-IgE mediated
Mechanisms of Hypersensitivity Reactions

Cytokine Release

- Monoclonal antibodies have a unique potential for a nonallergic infusion reaction caused by cytokine release
- Recognition and expert management of a cytokine-release reaction may enable patients to be rechallenged with the monoclonal antibody

Vultaggio et al., Curr Opin Allergy Clin Immunol 2011

Hypersensitivity reactions to mAbs: 105 desensitizations in 23 patients, from evaluation to treatment

Patrick J. Brennan, MD, PhD, *Tito Rodriguez Bouza, MD, *F. Ida Hsu, MD, David E. Sloane, MD, and Mariana C. Castello, MD, PhD Boston, Mass

A Initial reactions

<table>
<thead>
<tr>
<th></th>
<th>Trastuzumab</th>
<th>Infliximab</th>
<th>Rituximab</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)</td>
<td></td>
<td>100</td>
<td>35</td>
</tr>
<tr>
<td>(6)</td>
<td>40</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>(14)</td>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

% of patients

B Reactions during desensitization

<table>
<thead>
<tr>
<th></th>
<th>Trastuzumab</th>
<th>Infliximab</th>
<th>Rituximab</th>
</tr>
</thead>
<tbody>
<tr>
<td>(29)</td>
<td></td>
<td>100</td>
<td>35</td>
</tr>
<tr>
<td>(21)</td>
<td>40</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>(55)</td>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

% of desensitizations

Brennan et al., JACI 2009
Management of Reactions during Desensitization

Case: Hypersensitivity Reaction to Rituxan

- JM is a 72 year old male recently diagnosed with Non-Hodgkin’s Lymphoma, started on Rituxan therapy
- About one hour after starting his first infusion, he developed fever, chills and back pain
- Infusion was stopped and he received IV diphenhydramine and ranitidine
 - symptoms resolved within 35 minutes
- He refused rechallenge and presents today for your advice
How do you evaluate JM’s symptoms as a possible hypersensitivity reaction to Rituxan?

Rituxan Hypersensitivity

- Chimeric murine/human mAb against CD20 on normal and malignant B lymphocytes
- Infusion reactions with fever, chills and rigor reported in 5-10%
- Usually first dose within 30 minutes to 2 hours
 - correlate with disease burden and decrease with subsequent infusions
- Often resolve with slowing of the infusion
- Most reactions are not thought to be IgE-mediated

Grillo-Lopez et al., Semin Oncol 1999
Dillman et al., 1999
Mechanisms for Hypersensitivity to Rituxan

- **Cytokine Release Syndrome**: fever, chills, nausea, vomiting, hypotension, dyspnea
 - Increased serum TNF, IL-6

- **Tumor Lysis Syndrome**: renal insufficiency, hyperkalemia, hypocalcemia, hyperuricemia
 - Usually within 12-24 hours of infusion

- **Pseudoallergic Reactions**: urticaria, bronchospasm, hypotension, flushing

Rituxan Skin Testing

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epicutaneous</td>
<td>10 mg/mL</td>
</tr>
<tr>
<td>Intradermal</td>
<td>0.1 mg/mL</td>
</tr>
<tr>
<td>Intradermal</td>
<td>1 mg/mL</td>
</tr>
</tbody>
</table>

- Performed at specific academic centers
- Little data on sensitivity and specificity with poor predictive value currently
- Reaction rate lower during desensitization in ST negative patients but reactions seen in both skin test positive and skin test negative patients

Mechanism of hypersensitivity is unclear

Brennan et al. JACI 2009
Management of Patients with HSR to Rituxan

- 23 patients underwent 105 successful desensitizations

A Initial reactions

<table>
<thead>
<tr>
<th></th>
<th>Trastuzumab (3)</th>
<th>Infliximab (6)</th>
<th>Rituximab (14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>60%</td>
<td>50%</td>
<td>40%</td>
</tr>
<tr>
<td>Moderate</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td>Severe</td>
<td>10%</td>
<td>20%</td>
<td>30%</td>
</tr>
</tbody>
</table>

B Reactions during desensitization

<table>
<thead>
<tr>
<th></th>
<th>Trastuzumab (29)</th>
<th>Infliximab (21)</th>
<th>Rituximab (55)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Reaction</td>
<td>40%</td>
<td>40%</td>
<td>40%</td>
</tr>
<tr>
<td>Mild</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td>Moderate</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>Severe</td>
<td>10%</td>
<td>40%</td>
<td>20%</td>
</tr>
</tbody>
</table>

Rituximab Risk Stratification

- Infusion Reaction
 - Grade 1
 - Same Day Rechallenge
 - Grade 2 OR history of Grade 1
 - Intermediate Desensitization x2
 - Further Reactions
 - Tolerated
 - Grade 3 or 4
 - Intermediate Desensitization
 - Further Reactions
 - Tolerated
- Rapid Desensitization
 - 50% Infusion Rate (Inpatient)
 - Tolerated
 - 50% Infusion Rate (Outpatient)
 - Tolerated
 - Further Reactions
Infliximab

Chimeric Monoclonal Antibody TNFα

- Acute infusion reactions
 - Within 10 minutes to 4 hours
 - Can often continue with slowed infusions/premedication
 - With more severe reactions, desensitization has been successful

- Delayed infusion reactions
 - Usually 5-7 days later
 - Arthralgias, fevers, malaise, urticaria, myalgias, “serum-sickness” like

Antibodies to Infliximab

- Antichimeric antibodies (ATIs) are produced in a substantial number of patients

- Positive correlation between ATIs and both acute and delayed infusion reactions along with reduced efficacy of treatment
 - Concomitant administration of methotrexate reduces antibodies

- Not all patients with ATIs suffer from infusion reactions suggesting a role for other cofactors

- Shifting to another TNFα antagonist generally tolerated
Serum Anti-Chimeric Antibodies: Infliximab

Vultaggio et al. Allergy 2010

Cetuximab

- Chimeric IgG1 monoclonal antibody EGFR
- HSRs reported in 1-22% of patients
 - Higher rates in certain regions
- HSR frequently reported within minutes of initial exposure
- Found to be related to antibodies specific for galactose-α-1,3-galactose present on Fab portion of cetuximab
IgE Antibodies Binding to Cetuximab

Summary

- Approach will vary by drug and mechanism of hypersensitivity
 - Discontinue drug and use reasonable alternative
 - Slowed infusion
 - Pre-medication regimen
 - Skin Testing
 - Induction of tolerance
 - Utility of risk stratification